
www.manaraa.com

www.manaraa.com

Software Engineering Education

www.manaraa.com

Software Engineering Education
The Educational Needs of the Software Community

Edited by
Norman E. Gibbs and Richard E. Fairley

With 31 Illustrations

Springer-Verlag
New York Berlin Heidelberg

London Paris Tokyo

www.manaraa.com

Norman E. Gibbs
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213
USA

Richard E. Fairley
Wang Institute of Graduate Studies
Tyngsboro, MA 01879
USA

The Software Engineering Institute is operated by Carnegie-Mellon University under contract
with the Department of Defense.

The views and conclusions contained in these proceedings are those of the authors and
should not be interpreted as representing official policies, either expressed or implied, of the
Software Engineering Institute, Carnegie-Mellon University, Wang Institute of Graduate
Studies, the Department of Defense, or the U.S. Government.

Library of Congress Cataloging in Publication Data
The Educational needs of the software community.

Papers presented at the Software Engineering
Education Workshop, held at the Carnegie-Mellon
University Software Engineering Institute,
Feb. 27-28, 1986, sponsored by Software Engineering
Institute and Wang Institute of Graduate Studies.

Bibliography: p.
1. Computer software-Study and teaching

(Higher)-United States-Congresses. I. Gibbs,
Norman E. (Norman Edgar). II. Fairley,
R. E. (Richard E.). III. Software
Engineering Education Workshop (1986:Carnegie
Mellon University Software Engineering Institute)
IV. Carnegie-Mellon University. Software Engineering
Institute. V. Wang Institute of Graduate Studies.
QA76.751.E38 1987 005.1'07'1173 86-29757

© 1987 by Springer-Verlag New York Inc.
Softcover reprint of the hardcover 1 st edition 1987
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
by anyone.

987 6 5 4 3 2 1

ISBN-13: 978-1-4612-9129-9 e-ISBN-13: 978-1-4612-4720-3
001: 10.1007/978-1-4612-4720-3

www.manaraa.com

Foreword

Participants in the Software Engineering Education Workshop included
25 invited persons from academia, industry, and government, and 10
members of the SEI technical staff. Invited participants were asked to
write position papers; suggested topics were: Intellectual Foundations
and Fundamental Concepts of Software Engineering, Current Practice
and Needs Assessment, Current State of Software Engineering Educa
tion, Technology Transition, and Evolution of Software Engineering.
Based on the abstracts received, the chairmen with the help of the SEI
Education Division staff partitioned the papers into four categories:

• Software Engineering Principles

• Current Software Engineering Curricula

• Experiences with Existing Courses

• Future of Software Engineering Education

Working groups were formed by the organizers to address issues in
almost the same four categories. Discussion questions were prepared
with the goal of focusing the working groups on issues the SEI should
address as part of its educational mission. Three weeks before the
meeting all participants received the position papers, working group as
Signments, working group questions, and the material included in the
appendices to these proceedings.

The opening session included welcomes from the workshop chairmen
and a keynote address delivered by Professor Frederick P. Brooks, Jr.,
Kenan Professor of Computer Science, University of North Carolina at
Chapel Hill, and author of the classic book, The Mythical Man-Month.
Professor Mary Shaw, SEI Chief Scientist, discussed the scientific
aspects of software engineering based on ideas from the position
papers and her experience as a leading software engineering educator.

Professor James Collofello, Arizona State University, summarized the
papers that discussed current software engineering curricula. After
these presentations at the opening session, Professor Nico Habermann
of Carnegie-Mellon University moderated a discussion that included the
three speakers as panelists. The purpose of the panel was to give all
the participants an opportunity to comment on the pOSition papers and
the questions to the working groups prior to the smaller group meetings.

www.manaraa.com

vi Foreword

The working groups met during Thursday afternoon and Friday morning.
They made brief reports to the entire group the first afternoon and final
reports were given at the closing session Friday afternoon.

The proceedings are arranged into four major sections. The first in
cludes a transcription of the keynote address and the panel discussion
moderated by Nico Habermann. The next section includes all the work
ing papers submitted by the participants. Allison Brunvand of the SEI
Education Division placed them into a consistent format under the
guidance of Susan Dunkle and Purvis Jackson of the SEI Documen
tation Services. Any mistakes in the transcription and editing of the
papers are solely the responsibility of the SEI and not the authors. The
bibliographies of all papers were arranged into a single bibliography for
these proceedings. Because this bibliography may be useful to people
intending to start new programs, it is included immediately following the
papers and additional copies may be obtained from the Education Divi
sion, Software Engineering Institute, Carnegie-Mellon University, Pitts
burgh, Pennsylvania 15213.

The third section is a summary of working group activity. It includes the
questions given to the working groups as their charge, a list of group
members, and transcriptions of final group reports. The SEI arranged

for a transcription service to record the keynote address, the panel
charging the working groups, and the reports of the working groups.
The reader must keep in mind that text presented orally will not appear
as pOlished as written text.

The last section includes two papers which were mailed to all par
ticipants in advance of the workshop. Appendix 1 is an SEI draft cur
riculum that played a central role in the deliberations of all the working
groups. Appendix 2 is an SEI report on the educational needs of the
software community.

www.manaraa.com

Preface

The 1986 Workshop, Software Engineering Education: The Educational

Needs of the Software Community, was held at the Carnegie-Mellon
University Software Engineering Institute (SEI) on February 27 and 28,
1986. The workshop was jointly sponsored by the SEI and the Wang
Institute of Graduate Studies. Norm Gibbs of the SEI was general chair
and Dick Fairley of Wang Institute was program chair. The primary
focus was on master's level education in software engineering, although
there was some discussion of undergraduate and doctoral level issues.

The 1986 workshop was held almost exactly 10 years after the Interface
Workshop, Software Engineering Education: Needs and Objectives, was
held at the University of California, Irvine on February 9, 1976. The
main purpose of the 1976 workshop was to provide a forum in which
educators and people from industry could explore needs and objectives
in software engineering education. In contrast to 1976, the 1986 par
ticipants were mostly educators with considerable experience in teach
ing software engineering in academic and industrial settings. Four per
sons who attended the 1976 workshop were also present at the 1986
workshop.

In 1976 few educators had extensive experience in software engineer
ing education, but by 1986 a great deal of progress had been made. In
1986 many universities were routinely offering one or more software
engineering courses and at least three United States institutions: Wang
Institute, Seattle University, and Texas Christian University, were offer
ing Master's programs in software engineering. In addition, numerous
governmental and industrial organizations were offering a wide variety
of programs in software engineering, ranging from short training courses
to prolonged and intensive educational programs.

It seemed timely and appropriate to convene a limited attendance
workshop in which software engineering educators from academia, in
dustry, and government were invited to assess the current state of
software engineering education and recommend future directions. It
also seemed appropriate that it be sponsored by both the Software En-

www.manaraa.com

viii Preface

gineering Institute and Wang Institute. The SEI is a federally funded
research and development center established by the United States
Department of Defense to improve the state of software technology.
The Education Division of SEI, headed by Norm Gibbs, is charged with
influencing software engineering curricula development throughout the
education community. It has undertaken the task of working with
educators through the SEI affiliates' programs to design, develop, insert
and support a graduate curriculum in software engineering. Wang In
stitute of Graduate Studies was founded and endowed by the An Wang
family as a non-profit, autonomous institution of higher learning; Wang
Institute is not affiliated with Wang Laboratories. The primary goals of
the School of Information Technology of Wang Institute, chaired by Dick
Fairley, are to provide graduate level education in software engineering
and to offer other professionally oriented programs that meet the needs
of industry.

We were gratified by the time and effort that the partiCipants devoted to
their position papers, and by the level of enthusiasm and quality of par
ticipation they exhibited during the sessions. We believe that these
proceedings are a genuine contribution to the emerging discipline of
software engineering, and to software engineering education in par
ticular. The quality of this contribution is a direct result of their efforts,
and we thank them. Of course, we take full responsibility for any errors
that have been made in transcribing and editing their contributions.

We also thank the support staffs of the SEI and Wang Institute. Their
collective expertise and cheerful competence in handling logistiCS, local
arrangements, and emergencies made chairing of the workshop and
editing of these proceedings pleasant and rewarding experiences. In
particular, we thank Allison Brunvand and Albert Johnson of the SEI
Education Division, Susan Dunkle, Purvis Jackson, and Carol Biesecker
of SEI Documentation Services, and Sue Hovey of Wang Institute for
their efforts.

The preface to the 1976 workshop on software engineering education,
which was edited by Peter Freeman and Tony Wasserman, and also
published by Springer-Verlag, contains the following paragraph. We

www.manaraa.com

Preface ix

think it is as appropriate to this 1986 proceedings as it was to the 1976

proceed ings:

"We believe that these proceedings will be of interest to all persons
involved in developing computer science and software engineering
curricula, not only in universities, but also in industry. Furthermore,
we hope that these proceedings can serve as the starting point for
additional work in the development of coherent software engineering
curricula."

Richard E. Fairley
Wang Institute of Graduate Studies

Norman E. Gibbs
Software Engineering Institute

June 1, 1986

www.manaraa.com

Foreword
Preface
List of Participants

Contents

SECTION I Keynote Speech and Opening Discussion

Keynote Speech
People Are Our Most Important Product
Frederick P. Brooks, Jr.

Opening Discussion
A. Nico Habermann

SECTION II

v
vii
xv

1

16

PART 1 Software Engineering Principles 29

The Experimental Aspects of a Professional Degree
in Software Engineering
Victor R. Basili 30

Cognitive Science View of Software Engineering
Gordon H. Bradley 35

Software Engineering Education: An Idealized Scenario
Richard E. Fairley 52

Essential Elements of Software Engineering Education
Revisited
Peter Freeman 61

Software Engineering and Computer Science: How Do
They Differ?
Robert L. Glass 75

The Environment for the Software Engineer
A. Nico Habermann 78

Considerations for Graduate Software Engineering
Education: An Air Force Perspective
Walter D. Seward, Thomas C. Hartrum,
Gary B. Lamont, Duard S. Woffinden 87

www.manaraa.com

xii Contents

Why Is Software Engineering So Difficult?
William E. Richardson

Technology Selection Education for Software Engineers

98

William E. Riddle and Lloyd G. Williams 107

Graduate-level Software Engineering Education:
A Practitioner's Viewpoint
S.E. Smith 138

Some Observations on the Nature of the Software
Engineering "Problem" and Their Implications for
Software Engineering Education
William A. Wulf 143

PART 2 Current Software Engineering Curricula 148

Adapting to Changing Needs: A New Perspective
on Software Engineering Education at Texas
Christian University
James R. Comer and David J. Rodjak 149

The Software Engineering First Degree at Imperial
College, London
M.M. Lehman 172

The Master of Software Engineering Program at Seattle
University after Six Years
Everald E. Mills 182

Academic/Industrial Collaboration in a Postgraduate
Master of Science Degree in Software Engineering
David Budgen, Peter Henderson, Chic Rattray 201

"
PART 3 Experiences with Existing Courses 212

Skills versus Knowledge in Software Engineering
Education: A Retrospective on the Wang Institute
MSE Program
Susan L. Gerhart 213

Experience with a Software Engineering Project Course
W.M. McKeeman 234

www.manaraa.com

Contents xiii

Software Engineering Project Laboratory: The Bridge
Between University and Industry
Richard H. Thayer and Leo A. Endres 263

Software Projects in an Academic Environment
David B. Wortman 292

Exercises in Software Engineering
Jon Louis Bentley and John A. Dallen 306

PART 4 Future of Software Engineering Education 321

Trends in National Science Foundation Funded Research
and Their Impact on Software Engineering Education
W. Richards Adrion and Bruce H. Barnes 322

Software Engineering: Anomalies in Today's Education
and a Prospectus for the Future
George F. Rowland, Jr. 330

Education for the Future of Software Engineering
Mary Shaw 344

PART 5 Bibliography 358

SECTION III TRANSCRIPTS

Report of the Software Engineering Principles
Working Group
A. Nico Habermann, Group Leader 369

Report of the Current Software Engineering
Curricula Working Groups

A. Report of the Subgroup on Existing Curricula
AI Pietrasanta, Group Leader 381

B. Report of the Subgroup on Best Curriculum
Jon Bentley, Group Leader 388

Report of the Future Software Engineering
Curriculum Working Group
Dick Fairley, Group Leader 401

www.manaraa.com

xiv Contents

SECTION IV APPENDIX

Appendix 1 Proposed Curriculum for a Master of Software
Engineering (MSE)
James Collofello, edited by James E. Tomayko 420

Appendix 2 Educational Needs of the Software Community
Gary Ford 432

www.manaraa.com

List of Participants

Dr. Bruce H. Barnes
NSF
Computer Research
Washington, D.C. 20550

Professor Victor R. Basili
Department of Computer Science
University of Maryland
College Park, MD 20742

Dr. Jon Louis Bentley
AT&T Bell Labs
Room 2C-317
Murray Hill, N.J. 07974

Professor Gordon H. Bradley
Department of Computer Science
U.S. Naval Postgraduate School
Monterey, CA 93943

Dr. Frederick P. Brooks, Jr.
Department of Computer Science
University of North Carolina
New West Hall 035 A
Chapel Hill, N.C. 27514

Professor David Budgen
Department of Computing Science
University of Stirling
Stirling FK9 4LA Scotland

Professor James S. Collofello
Department of Computer Science
Arizona State University
Tempe, AZ 85287

Professor James R. Comer
Department of Computer Science
Texas Christian University
P.O. Box 32886
Fort Worth, TX 76129

Dr. Richard E. Fairley
Wang Institute of Graduate Studies
Tyng Road
Tyngsboro, MA 01879

Dr. Gary A. Ford
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor Peter Freeman
Department of Computer Science
University of California, Irvine
Irvine, CA 92717

Dr. Susan L. Gerhart
MCC
Software Technology Programs
9430 Research Blvd
Echelon Building One
Austin, TX 78759-6509

Dr. Norman E. Gibbs
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor Robert L. Glass
Software Engineering Program
Seattle University
P.O. Box 22012
Seattle, WA 98122

Professor Nico Habermann, Chair.
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor M. M. Lehman
Department of Computing
Imperial College
180 Queen's Gate
London SW7 2B7 England

www.manaraa.com

xvi List of Participants

Dr. William McKeeman Dr. S. E. Smith
Wang Institute of Graduate Studies IBM Corporate Technical Institutes
Tyng Road Software Engineering Institute
Tyngsboro, MA 01879 500 Columbus Ave.

Professor Everald E. Mills
Software Engineering Program
Seattle University
900 Broadway Ave.
Seattle, WA 98122

Mr. AI Pietrasanta
IBM Corporate Technical Institutes
Systems Research Institute
500 Columbus Ave.
Thornwood, N.Y. 10594

Major William E. Richardson
Department of Computer Science
U.S. Air Force Academy
Colorado Springs, CO 80840

Dr. William E. Riddle
rMise
P.O. Box 3521
Boulder, CO 80303

LCDR George F. Rowland, Jr.
Department of Computer Science
Ward Hall
U.S. Naval Academy
Annapolis, MD 21402

Lt. Col. Walter D. Seward
Air Force Institute of Technology
WPAFB,OH 45433

Dr. Mary Shaw
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Thornwood, N.Y. 10594

Professor Richard H. Thayer
Department of Computer Science
California State University
Sacramento, CA 95819

Dr. James E. Tomayko
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor David B. Wortman
Computer Research Center
University of Toronto
Ontario M5S 1 A4 Canada

Dr. William A. Wulf
Tartan Laboratories
477 Melwood Ave.
Pittsburgh, PA 15213

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Observers:

Dr. Mario Barbacci
Dr. Peter Feiler
Mr. Albert Johnson
Mr. John R. Nestor
Dr. Joseph A. Newcomer
Mr. Charles Weinstock
Mr. William Wood

Mr. Karl Shingler
U.S. Air Force
SEI Joint Program Office

www.manaraa.com

Section I

Keynote Speech
and

Opening Discussion

www.manaraa.com

People Are Our Most Important Product

Frederick P. Brooks, Jr.
University of North Carolina at Chapel Hill

Introduction

The function of a keynote speech (if any) should be to give perspective.
Coming from outside the software engineering research field, but from

within the computer field, I would like to offer an outsider's perspective

on some current software engineering curricula proposals.

Let me start with a disclaimer. Since writing The Mythical Man-Month, I

have not worked in software engineering management nor in software

engineering research. Everyone here is more current in the field than

I. I am a lifetime fan of computers and of software engineering; I teach a

course in the subject, and I try to stay up-to-date in the field. But I am

not really working in it.

The peak year in sales for The Mythical Man-Month was only two years

ago. Yet the book was written in 1975, about an experience in 1963-65.

The fact that it has the slightest relevance now is a sad comment on the

progress of the discipline.

Wave After Wave

In the some 40 years since I first became interested in computers, we

have seen seven revolutions, the first of which is the computer revolu

tion represented by the Harvard Mark I. I was 13 when the Mark I was

introduced, and watching with big eyes. That was the first I had ever

heard of the idea of a computer. I decided that it was the exciting thing,

and I started heading that way.

Second, came electronic computers and the invention of assemblers
and interpreters. In 1952, I had a chance to learn to program (in octal

absolute) on the not-quite-delivered, vacuum-tube-based IBM 701. That

experience was a major milestone for me.

www.manaraa.com

2 People Are Our Most Important Product

The third revolution was brought by the transistor and Fortran - for me,

that meant three years helping design Stretch. The System/360 was
another major milestone for me. It represented the fourth revolution -

integrated circuits and mandatory operating systems.

The fifth revolution brought minicomputers and the concurrent develop
ment of communications as an inherent part of most computer systems.
The most recent revolution involves microcomputers and - one of the

most important factors today - the mass marketability of microcom
puter software and its corollary, packaged application programs.

Hardware

1. Computers
2. Electronics
3.Transitors
4. Integrated Circuits
5. Minicomputers
6. Microprocessors
7. Mass-Market PCs

Software

Assemblers
Compilers
Operating Systems
Communications
Programming Environments
Packaged Applications

Figure 1. Revolutions

Twenty Tries at a Software Project Course

One of the things I did as soon as I got to Chapel Hill, was to start the
kind of one-semester, small-team, classical project course that Jon
Bentley, who is a member of the technical staff at A.T.& T. Bell
Laboratories says in his paper is not the right way to do it. I think
everyone agrees it would be better as a two-semester project course.

Except for two years on sabbatical, I have taught that course every year
for 22 years. Twice I have team-taught it with David Parnas, which was
phenomenally exciting. One year, I taught it with Bernard Witt, of IBM's

Federal Systems Division, and another year with Constance Smith, who
taught at Duke. The evolution of the course has been interesting.

www.manaraa.com

Brooks 3

I am teaching the software engineering project course this term, as for
the last two years, over our statewide television network. I can see the
students at the remote sites, and they can see me. That has an un

expected advantage: although I would normally be teaching live over the
network, I can give them a videotaped lecture. That is what I am doing
there this afternoon.

One of the laymen at the Microelectronics Center of North Carolina at
Research Triangle Park, which serves six member institutions, had been
watching a lecture on a monitor installed in the lobby. He said, "You
don't seem to be teaching. You seem to be preaching." Indeed so.
There are two reasons why. One is we do not really know that much to
teach. Gordon Bradley, who is a member of the Computer Science
Department, Naval Postgraduate School, Monterey, California and Mary
Shaw, who is the Chief Scientist at the Software Engineering Institute,
speak in their papers about the lack of identification of principles.
Second, we are trying to teach practices that we believe - and this is
an article of faith - involve short-run pain for long-run benefit. Preach
ing always involves persuading people to undergo short-run discipline
for long-run benefit. That is what preaching is all about. So it is no
accident that a great deal of what we do when we teach software en
gineering is, in fact, exhortation. We are trying to motivate the will of the
students, rather than merely to inform the mind. I expect some element
of exhortation to be necessary forever. The conversion of our students'
long-run ambitions into daily motivation is always an important function
of the teacher.

Today, I want to talk about the state of software engineering as I under
stand it, and some opinions on the curricula issues that are before us.

The viewpoint, I fear, will be that of the leper at the feast. After reading
the pre-distributed position papers, I find I am in fundamental disagree
ment with a good deal of what is proposed, described, and practiced.

www.manaraa.com

4 People Are Our Most Important Product

On Software Engineering

Engineering

I will start with my definition of software engineering. I like to distinguish

four things: a program, a programming system, a programming product,
and a programming system product. Software engineering is concerned
with building programming products and programming system products.

In other words, it is proper to call it software engineering. It is indeed an
engineering discipline - it focuses on building.

A

Program

X3

A
Programming

Product

(Generalization,
Testing,
Documentation,
Maintenance)

X3
A

Programming

System

(Interfaces
System Integration)

A

Programming

Systems

Product

Figure 2. Evolution of the Programming Systems
Product©1

In graduate school I roomed with a high-energy physicist. He spent a

year building the electronic apparatus for his experiments. He then
spent two weeks at Brookhaven National Laboratory taking pictures of

events in a cloud chamber, then a year looking at his 100,000 pictures.
If you looked at the way he spent his time, you would have said he was
dOing engineering. On the other hand, I have known engineers who

1Frederick P. Brooks, Jr., "The Mythical Man-Month," © 1975, Addison-Wesley Publish
ing Company, Inc., Reading, Massachusetts. Pg. 5, Fig. 1.1. Reprinted with permission.

www.manaraa.com

Brooks 5

seem to spend most of their time taking measurements about hitherto
unknown phenomena. If you were asked what he was, judging by how
he spends his time, you might say, "He looks like a physicist."

The difference lies in the motivation and not in the activity. The scien
tist builds in order to learn; the engineer learns In order to build.
We can accurately use this distinction to characterize software en
gineering. As an engineering discipline, it is concerned with quality,
effectiveness, cost, and schedule - concepts that, if not alien, are at
least of little concern to the underlying science.

Arbitrary Complexity

What is peculiar about the engineering of computer software objects?
How does it differ from the classical disciplines? It differs in an impor
tant way from two of the supporting disciplines, mathematics and
physics, from which electrical engineering derives. Most math
ematicians and physicists dislike real-world computer science problems.
The reason is that our problems are characterized by what I call
arbitrary complexity. Anyone who has wrestled with an operating sys
tem and had to interface 44 different kinds of input-output devices; or a
payroll system and had to deal with the income tax for 50 states, plus
the federal government, plus innumerable cities that have peculiar in
come tax laws; or wrestled with the other forms of artifact that we have
to build and the environments into which we have to build them, will
recognize this as a common characteristic.

Mathematicians and physicists dislike this for different reasons. The
mathematician dislikes complexity, and the mathematician's fundamen
tal attack on complexity is to abstract. One forms an abstract model of
the problem, solves the abstract model, and then applies the solution
back to the original problem. That paradigm has been phenomenally
successful. The history of applied mathematics, intertwined with the
physical sciences for more than two centuries, is one of the rich results
produced by that model. Increasingly, however, as one comes up
against intrinsic complexity, we find that smooth models of classical
mathematics do not work. So we come to fractal mathematics for
describing or abstracting roughness. We continually have to invent new
mathematics to deal with deeper levels of complexity.

www.manaraa.com

6 People Are Our Most Important Product

On the other hand, physicists dislike the arbitrariness. They are no
strangers to complexity. Anyone with 26 elementary particles recog
nizes that the world is complex. What they dislike is that it is arbitrary,
because physicists, no matter how atheistic, are fundamentally con
vinced that there are not 26 elementary anythings; that there is a fun
damental, unified theory to be found. It is that faith that keeps the
physicist going forward.

No such faith comforts the computer scientist. Our complexities are
arbitrary, because they are the fruits of many independent minds acting
independently. Consider the task of interfacing to an operating system
44 different input-output devices, each designed by a different engineer
ing team. Unless there was a pre-existing interface, there is no reason
to believe those designers acted under any unifying principle at all. This
arbitrary complexity of interfaces characterizes much of what we do. It
is a reason why we had to develop a new science, with approaches and
techniques different from those of the classical disciplines.

What About Software Makes Its Engineering Hard?

A natural question is, "Does it have to be this hard?" Is it not just that
we have not yet found the key to unlock the door? Studying the nature
of these arbitrary complexities, we see that the essence in building
software products involves the complexity of the conceptual structures

\

we are working with, rather than the labor of representing them. This
complexity is compounded by the necessity to conform to an external
environment that is arbitrary, unadaptable, and ever-changing.

All we ask ourselves, "How have the big gains in productivity and effec
tiveness in software engineering come in the past," I think we will see
those gains - in high-level languages, time-sharing, unified program
ming environments - all broke major artificial roadblocks to expressing

the complexities of our solutions and our problems. The high-level lan
guages remove the artificial roadblock of coding programs in machine
level instructions in zeroes and ones. Time-sharing removed the artifi
cial roadblock of limited access to hardware. The unified programming
environments remove the artificial roadblocks that were caused by a
lack of common file formats and command philosophies.

www.manaraa.com

Brooks 7

We will make progress by continuing to remove these artificial
roadblocks, via workstations, better languages, richer programming en
vironments, etc. I think, however, that fundamental progress can only
come by really attacking the underlying complexity, not the difficulties of
expression. There are many promising attacks, as Figure 3 suggests. I
will not take the time to talk about them, because I really want to go on
to curriculum. But I must remark that we vastly underestimate the work,
the difficulty, and the error-proneness of setting system requirements in

the first place.

• Top-down design - N. Wirth

• Outside-in deSign, system architecture - G. Blaauw

• Incremental growing on an executable driver - H. Mills

• Information-hiding modules - D. Parnas

• Chief Programmer teams - H. Mills

• Verification - E. Dijkstra, Floyd, Hoare

useful, but limited by costliness

• GOTO-Iess programming - E. Dijkstra

structure, yes; avoiding GOTO, no.

• Structured walk-throughs

Figure 3. Key Ideas

Iterative Development is Crucial

I like Christopher Alexander's maxim in Notes on the Synthesis of Form:

"The only way to define fit, is as the absence of misfit." If one wants to

grind a steel plate flat, one takes an optically flat standard plate, paint
the whole works with purple goo, slap it up against the plate one is
going to grind, then grind all the purple places. Then one paints the
optical flat with goo again, slap the two together again, and grind the
places that are still purple with a finer wheel until, finally, instead of none

of it being purple, al/ of it is purple. So, the only operational way to
define this optically flat plate, is having no ,bulges or valleys. Cor
respondingly, I believe the process of dealing with arbitrary complexity,
in terms of the user's requirements, is iterative: we build prototypes, put

www.manaraa.com

8 People Are Our Most Important Product

purple paint on them, slap them up against real users, and grind the
places that are still purple - in the products, not in the users.

Iteration on a programming product specification is an inherent, proper
part of the profeSSional's job. We cannot stand back and gripe that the
user didn't know what he wanted. We must take it as given that the
user does not and cannot know what he wants about artifacts as com
plex as those we now build. The mind of man cannot imagine all the
ramifications of such artifacts. There must be an iterative cycle in which
the professional works with the user to define the requirements;
demonstrates their consequences in human factors, cost, and perfor
mance; then in a prototyping phase iterates with the user to develop a
product that is, in fact, satisfactory.

The Failure of the "Standard Software
Development Process"

Let me offer a discouraging observation on the state of the art. I did a
little mental study in which I wrote down a set of what I call "exciting
software products." These are ones that have avid fan clubs, ones that
people are crazy about. You can add names to this list, shown in Figure
3. We typically call the fans bigots: APL bigots, for instance. I think the
ancestral group should be Fortran's. Those of us who work with
physiCists and chemists today, recognize that there are still Fortran
bigots about! Each of these exciting products has such a group. I put
Visicalc as the latest, but not the last.

I put a different set of things, which you can call the "work horses" of the
field, in another category. This group is made up of things that are
immensely useful, in many cases immensely successful, and have
made major contributions to getting work done. People appreCiate
some of their successful characteristics and don't appreCiate others, but
it is very hard to find bigots, excited fans, about any of them.

www.manaraa.com

Brooks

Outside Product
Houses

Fortran
APL

Pascal
LISP
C
UNIX
Tenex
Visicalc
VM-CMS
System R

From Product
Houses

OS/360
COBOL
Algol
DEC's VMS
PU1
Ada
IMS

Figure 4. Exciting Software Products

9

I have trouble finding any exciting software product - one that arouses
passion on the part of its users - that was developed inside a normal
product process. What does that tell us about the normal product
process? About the state of the art? About the importance of teaching
the normal product process? I think it tells us something about software
products and designs in general: the thing that makes exciting software
products is conceptual integrity, and conceptual integrity comes from
individuals.

One can elaborate a little bit. Committee design is a minimax strategy.
It limits the losses and goofs. It also limits the upper reach of quality,
elegance, function, and speed. This is true of bridges, cars, movies,
novels, paintings, music, etc. So the theorem I would leave you with,

because I can't prove it, is that a product that surely excites somebody
is more likely to excite a lot of people than a product that more or less
suits everybody. The "work horses" I referred to, the ones that do not
have fan clubs, can be characterized as having "homogenized designs,"
and the ones with bigots, "idiosyncratic designs." The homogenized
design process is aimed at producing products that more or less suit
everybody. You may want to propose other candidates, and you might
challenge some of my choices of candidates, but I think that the thrust of
those two sets is unmistakable.

www.manaraa.com

10 People Are Our Most Important Product

• Limits losses and goofs

• Also limits the upper reach of
quality/elegance; function; speed

• Bridges, cars, movies, novels, theorems, paintings, music

• Idiosyncratic vs. Homogenized

A product that surely excites somebody is more likely to
excite a lot of people than one that more or less suits
everybody.

• True of software system
• Of software engineering curricula, too.

Figure 5. Committee Design Is a Minimax Strategy

On Software Engineering Curriculum

Standard vs. Individualistic

I think this theorem is also true of curricula. We may be richer, in the
process of evolving a generally accepted software engineering cur
riculum, if we have a lot of places forming a lot of curricula and publish
ing them, than if we move too rapidly toward any kind of standard cur
riculum. If you look in many different college catalogs, you will see that
there has developed a great deal of standardization among under
graduate physics curricula, for example. In the middle two years of
undergraduate physics, one takes the same courses anywhere one
goes, and one may take them from the same text books. Is this done
through standard curriculum development by the American Physical
Society? No. The similarity exists because the importance of the sub
ject matter is self-evident: there is a consensus in the field of what the
principles are. I suggest that a standard curriculum be grown organi
cally by developing a set of principles. That is the only way to make it
durable, important, and portable.

Does that mean it is not useful to develop model curricula? Of course it
is useful. In any branch of art, the people who went through it first, and

www.manaraa.com

Brooks 11

learned what not to do, can be of great service to those who come on
the scene by explaining where the pitfalls and minefields are. Sharing
experience with curriculum development saves people from making the
same mistakes again.

The most important principle to teach a software engineer is, "Don't
build software (if you can help it)." It is almost always cheaper to buy it
if you can, and it is almost always cheaper to buy it even if its price is
about the same as your estimated cost for you to build it. That is, one
generally underestimates the effort required to build product-quality
software. Even by buying it, you may not get product-quality software,
but your odds are much better.

Permanent vs. Transient Truths

From the perspective of looking at seven computer revolutions over the
past 40 years, the first thing that strikes me is that one has happened
about every six years. Second, most of what we learned and talked
about in the 1950's, we would not think of teaching today. Much of what
we taught is no longer true, or if true, no longer relevant. Are we train
ing people for an initial job or educating them for a career? If we are
educating for a career, I wholeheartedly support Mary Shaw's identifica
tion from the Carnegie Plan of what is involved in professional education
for a career. We need to teach them to think like software engineers,
rather than to train them in 27 programming languages, 15
methodologies, and 30 tools. That means they will have to be exposed
to some methodologies, some tools, and some programming languages.
But those are not our objectives. Our objective is to shape ways of
thinking, and, by experience at wielding some tools, to develop and
facilitate the implementation of new tools in the field.

That brings me to the pOints about which I would argue. It seems to me
that all the central questions about software engineering curricula can
be summarized by a set of dichotomies, as in Figure 6.

www.manaraa.com

12

Standard
Transient
Fat
Narrow
B.S.
Science
Projects

Thin vs. Fat

People Are Our Most Important Product

vs. Individualistic
vs. Permanent
vs. Thin
vs. Solid
vs. M.S.
vs. Design
vs. Exercises

Figure 6. Software Engineering Curricula

Let me put forth another theorem: if you do not know what to teach in a

software engineering curriculum and, if in putting one together, you find
a lot of modules that are short on principles - where one can teach

only tools or methodologies, or today's practices - instead of most of
those modules, teach nothing at all. Instead, encourage students to

spend those hours learning something such as physics, mathematics, or

accounting, which they do know what to teach. One of the most valu

able courses I had as an undergraduate, and today use regularly, was a

one-semester course in accounting for non-accountants.

I would not offer an undergraduate software engineering curriculum at

all. I would offer a two-semester software engineering course, as part of

a computer science curriculum. Young people come to me and say, "I

want to be a computer professionaL" I reply, "Do you want to go to

graduate school, and become a real professional?" If they say "yes," I

say, "Do not take a computer science major as your undergraduate.
Get educated."

Our oldest son fell into that fiery passion for computers which often

strikes in the teen years. It is very much like being engaged and being

married. You want to experience and enjoy that initial passion, but you

would like to grow out of it into a more mature relationship, one that will

always be fired with moments of the passion. I encouraged each of our

children to do that with the computer passion while they were in high

school, because it can ruin a college year if it first strikes then.

www.manaraa.com

Brooks 13

When that son got ready to go to college, he wanted to study computer
science. I said "Well, if you really want to work with computers, do a
physics major. Study all of the sciences. Do not fall into this one just
because it is handy." (He had been exposed to a lot of computers
during his life.) "Then, when you are a senior, if you still want to be
come a computer scientist, I will quit hindering and start helping. But
first, sample all of the sciences to see if your infatuation with computers
comes merely from that propinquity." The summer after his junior year
we were walking on the beach and I said, "Well, son, what do you think?
Which subject interests you most?" And he said, "You go into a room,
and you look around, and you say, 'Look at all the pretty girls.' Then you
say, 'But this is the one I love.'" I said, "I quit." He is now in a PhD
program in computer science at Stanford.

Look at your undergraduate college experience. Which parts do you
retain as most valuable? For me, it is a Shakespeare course, a French
literature course, a lot of experience in public speaking, a lot of training
- extracurricular and curricular - in how to run meetings, writing train
ing, an accounting course, and especially some courses in electricity
and magnetism. Those experiences are still very useful to me. I can tell
you lots of things I spent hours on that I have not used. Some of them
were in the liberal arts, but many others were in the major.

In like manner, we must train professionals who have been educated to
be citizens, leaders, and communicators. The software product today
consists of more documentation than code, and the good software
product today includes good documentation. How will you learn to write
if you have not studied the good models of writing and practiced the
techniques? Do we want to displace a broad and useful undergraduate
education with training in software engineering tools and methods?
Surely not!

Broad vs. Narrow

At the graduate level means I would recommend a particularized
software engineering curriculum only to practitioners who have had field
experience and are coming for career upgrade education, who know
they are getting a specialized, technical training, not graduate educa-

www.manaraa.com

14 People Are Our Most Important Product

tion. For all new software engineers, I would recommend a master's in

computer science, with several courses in software engineering, but not
a software engineering curriculum. Why? Because much of what we
teach today will not be true ten years from now, and a great deal of the
rest will not be relevant. More important, they will need the broader
knowledge.

Can anyone in the software-building business really operate without un
derstanding simple accounting? Can anyone in software engineering
really operate without understanding the principles of at least the first
course in numerical analysis: concepts, error propagation, and the
vagaries of floating point?

Most curricula being put forth for software engineering - and there are
exceptions in the Proceedings - give a one-course, at most, discussion
of computing machines. Undergraduate exposure, which typically is
one course in machine architecture, is assumed for the graduate
courses - and those may include another one. Are we going to build
all of this software without understanding the engines with which it will
run, the trends shaping those engines, and the ability to project the cor
responding advances for hardware that will revolutionize the kind of
software we have to build? So, I would argue very strongly for broad
versus narrow.

Solid vs. Hollow

All the university departments I know want to create a lot of courses that
address topics at the very forefront of the field. Why? Because that is
what the faculty wants to teach. So we construct, particularly at the
graduate level, what I call "hollow curriculum"; in football terms, no
blocking, no tackling, but Statue-of-Liberty plays all over the place. We
shuffle the core curriculum courses off to the most junior faculty mem
bers to teach, and we elders teach the advanced ones. A solid cur
riculum is one in which those intermediate-level things that seem like old

hat to us, but are not old hat to the students, fill in the interior. These
are the established principles represented by algorithms, data struc

tures, operating systems, languages, machines, and compilers.

www.manaraa.com

Brooks. 15

Design vs. Science

The science vs. design debate rages in engineering schools
everywhere, all the time. I think the papers in the Proceedings properly
emphasize that if the motivation is to build, we have to teach the art of
design and not merely the supporting sciences. It is in this respect that
software engineering courses differ from many of the underlying com
puter science courses. We must teach people to design. The only way
to teach people to design is to have them deSign, criticize, have them
redesign, and then to have them build the designs.

Projects vs. Exercise

What they design brings us to the exercises vs. projects question: How
little and how big? I think the answer is you really want to do some of
both. The real issue is the precise balance between exercises and
projects.

Great Designers

Now one more thought: If we go back to the list of great software
products, exciting ones, we observe that they have a conceptual in
tegrity that comes from very small design teams: Fortran with half a
dozen people, APL with two people, and so on. These design teams
are not only small, but also comprise really first class minds.

Let me suggest one more principle: great designs come from great

designers. Good deSigns, as distinguished from bad deSigns, can be
produced by teaching people good principles and proper methods. We
take the step from good designs to great designs, however, by finding
the people who have the talent to do the great designs.

Look over the whole body of classical music. How much has survived?
On any classical music station you can hear obscure selections from the
16th to the 19th centuries. When you listen to them, you know why they
are obscure. You can count on your ten fingers the great'composers in
each century. Indeed, even they have written some losers, but there
really is a qualitative difference between the great and the obscure.

www.manaraa.com

Opening Discussion

A. Nico Habermann, Moderator

Nico Habermann: This discussion will focus on the work to be done by
the task forces, laying some common ground. To begin, I have sum
marized four of the major points from the papers in the conference
proceedings and from the presentations this morning. We have heard
provoking words by Fred Brooks, Mary Shaw discussed the scientific
aspects of software engineering, and Jim Collofello remarked on the
current practice. So we will use this discussion hour to direct the task
forces to their particular tasks.

My four observations from the papers are:
1. The nature of software engineering.

2. The difference between small and LARGE.

3. Evolution vs. Revolution: No particular methodology or
technology will emerge that will radically change software
production.

4. Software engineering must grow with changing technol
ogy.

First, it is clear from what we have read in the conference proceedings
that people are concerned about the nature of software engineering:
exactly where it fits in, how it has been developed up to this point, and
our responsibility. Software engineering should be based on principles,
and I think we can all agree on this. We are not talking about a large
number of tools or technologies, or even a large number of
methodologies. We must look for those things that have a long-term
value, not just for the things that are a "quick fix."

The second thing that is clear from the papers is that people are also
concerned about the distinction between small and large and how we
use small projects and exercises to show the complexity of the large
systems.

Third, we don't expect to find, all of a sudden, the cornerstone for solv
ing all of the software production problems through education. Touching

www.manaraa.com

Habermann 17

place that have changed the field dramatically. But the educational
process has not gone through these large revolutions. It is questionable
whether we can even spot the revolutions in the software engineering
discipline. And no one actually expects a sudden, major breakthrough
in software engineering that will help solve the problems of software
production.

Fred challenged this point very strongly. Is it, indeed, the right approach
to go with joint design? Is it, indeed, right to form these committees and
say, "Let the committee write a proposal for a master's degree in
software engineering curriculum?" If that is not the right approach, how
should it be modified?

Finally, the point has been emphasized several times today that the field
is growing very fast and education must keep pace. It cannot be static.
It must evolve over time. This point comes out in many of the papers: if
we look for a basis for software engineering, then we look for related
disciplines. No one seriously proposes to start software engineering
before such a basis has been laid. That actually is the foundation for
software engineering.

Sometimes I think methodologies, as Bill Wulf points out in his paper,
are overemphasized. If we don't have one, single methodology, it
doesn't mean that we are lost. Just looking at the development right
now, we have lots of tools and techniques available.

We do agree, and this is clear from the papers, that there must be some
form of experimentation. Jon Bentley argued against the project idea,
but I think that, nevertheless, the experimentation idea is among all of
us. And Fred Brooks has argued strongly that experience should be
gained by practice, by being exposed to working on large systems, and
then come back to what is narrow e~ucation and training at the master's
degree level. I think that some form of actual experimentation, included
in this type of software engineering education, is something we can all
agree upon.

So, let's open the floor and use these four pOints as a basis for our
discussion.

www.manaraa.com

18 Opening Discussion

Manny Lehman: I think the critical issue - and the thing that is wrong
with many of the curricula in the proceedings - is that software en
gineering is not yet based on principles of science and engineering. At
present, what software engineering requires, to a large extent, is the
identification of principles by the development of models, and the crea
tion of engineering discipline. All we have now are lots of isolated
methods, tools, techniques, languages, and so forth. As software en
gineers, we need to train our students to be able to observe, to think
and to perform; to be familiar with what exists but also to understand the
theory and principles that lie behind what exists and unite it into a
coherent discipline.

For example, to develop an integrated support environment involves an
understanding of what the programming process is all about. We have
to be able to develop theories of the process and to understand the
context in which particular objects are created. A civil engineer doesn't
design the repeated picks and shovels; whenever possible he uses the
available picks and shovels to create a road, a bridge, or a large build
ing. Software engineering has an integrated discipline that we and our
students are going to create in the future from the primitive concepts
that exist at the present time. Thus we have to educate students to be
familiar with much more than presently available methods and tools.

I liked Fred's distinction between scientists and engineers: that scien
tists build in order to learn and engineers learn in order to build. We are
still in the learning phase. The prime duty and responsibility and chal
lenge to the software engineer - and to the software engineers we will
be training in the next decade - is to learn intelligently and to extend
and apply what is learned to the world at large - to the system
developers.

Nico Habermann: Thank you for your observation. I think that in order
to be able to build some theories, you also have to learn the technique
itself. And that is something you can learn at the undergraduate level.

Dick Thayer: The argument that we don't have a science to base en
gineering on in the software area bothers me very little. We had

www.manaraa.com

Habermann 19

medicine long before we had a medical science. I think that we are at
the stage in software engineering where we have to find ways of
developing software whether or not the principles are defined. The
science can evolve on its own - let's first worry about how we go about
developing software.

Mary Shaw: I would like to reply to Dick. A colleague of mine com
mented to me not long ago that even the purest of the sciences, math
ematics, has withstood fundamental changes in its foundation on a num
ber of different occasions without destroying the edifice that rests upon
that foundation. So those of us who feel an instinct to build the foun
dation before starting to erect the edifice should take heed. Even in the
field in which you would find that most unlikely, progress can be made in
the absence of absolute certainty about the foundation.

Peter Freeman: I have not seen the relationship between software
engineering and systems engineering addressed, and I would like to get
the task forces' comments on it. By systems engineering I am not refer
ring to the purely mathematical, narrow definition, but to the very real
activity that goes on - where a large software system is being en
gineered. As we automate factories, for instance, there is a large cadre
who are concerned with systems engineering, but it includes a lot of
things that are not software. What do you think is or should be the
relationship between software engineering - however we define it and
teach it - and that larger activity?

Fred Brooks: I get the impression that engineering discipline is in so
bad a shape, with respect to lack of principles, as we are. But, this is a
different "art." Even though there are books and curricula, the hard task

is to distill out the common part. We should be in conversation with the
professional systems engineers, watching closely what they are doing in
their education, but not necessarily hitching our cart to that horse.

Bill McKeeman: I think Fred pOinted out the danger of committee work.
Maybe the SEI can use this more as a vehicle for getting creative
people the time and opportunity to produce those wonderful artifacts, in
the discipline or the field itself, to do what we want to do. But there is an

www.manaraa.com

20 Opening Discussion

issue I would also like to see addressed on this: there is a difference
between the order in which something can be learned by a novice and
the order in which we would want to present it as the science. There
isn't one big tome called "physics" that, when handed to students, sud
denly lets them assimilate the knowledge of the physical world. Instead,
they do simple experiments and work from examples to generalize that
knowledge. So, the bottom up and top down approaches probably have
to be mixed; I would hate to see us dictate a top down approach. It
might kill our youngsters' urges to learn.

Mary Shaw: I agree with Bill. The effective way to teach theory is in the
context of examples. The best principles we can find, in the context of
the best current practice, provides not only comprehensive skills, but a
set of tangible examples that can be used to appreciate the theory as it
comes.

Fred Brooks: A self-describing principle is: We learn inductively and
teach deductively.

Bill Wulf: In response to Bill's comments, it strikes me that physics is
taught by a succession of increasingly accurate lies. We have simple
models - and a series of progressively more accurate ones, which
gives us a couple of nice properties. First, it is fairly easy to com
prehend the simple models and, second, it implicitly teaches the student
to be suspicious of any theory, which is just right when you are describ
ing physical work.

But the real point is that we talk about principles and we talk about
things like methodologies and tools. Somewhere in there is missing the
notation of facts - our transition from being a producer of computer
sciences to being a consumer of them. It strikes me that the younger
kids coming out of bachelor's programs simply don't have a lot of the
factual information I would expect them to have. They lack the factual
information to make good engineering decisions, and that is kind of
missed in the distinctions.

Nico Habermann: I tried to point that out in my paper. One principle I
listed was that the body of knowledge and the facts have to be relied
upon in teaching the discipline.

www.manaraa.com

Habermann 21

Dick Fairley: Although I agree with most of what Fred Brooks said,
there is an elitist view expressed there. It is elitist on two counts. One
count is on fundamentals vs. techniques, and the second is how you
deal with the unwashed masses - you are still dealing with 1960's
technology. The issue I want to raise is the balance between fun
damentals and techniques for training vs. education. I think it is incum

bent on us to produce graduates who grasp the fundamentals and can
continue to learn and evolve with the passing of time. But, people also
have to know how to do something useful and practical.

Fred Brooks: Harlan Mills remarked once that, in trying to inculcate
new programming methodologies throughout the IBM Federal Systems
Division, the most effective thing they have done is to mix new
graduates in with the old timers. The old timers understand the applica
tions, and the new graduates understand the new methodologies. This
is, of course, following the university model, where the faculty learns
each new development from the graduate students.

But in terms of washing the masses, the masses among software prac
titioners are already selected to be rather bright - and by now are
rather stuck in their ways. Part of the washing, then, is to expose them
to another generation.

Dick Fairley: The other thing I hear in your remarks is an industry
responsibility, as well as the university responsibility.

Mary Shaw: When a position is criticized as being elitist, there is often
hidden behind the criticism a suggestion that some of the students can't
handle the material. I think we need to recognize that there are hard
problems in the world - and that those problems require people with
certain sets of skills to solve them.

We need to attack this by thinking a little more carefully than we have in
the past about the collection of job descriptions that exist within the
software field. Not everybody who deals with software needs to be a
software engineer. There is an increasing set of requirements on the
performance, reliability, and functionality of the software we are being
asked to produce. I think we are getting very close to the point that just

www.manaraa.com

22 Opening Discussion

wanting to be a software engineer and having a lot of experience pro

gramming is not necessarily a set of adequate qualifications - anymore

than liking bridges makes you qualified to be a civil engineer. If we can

identify the job descriptions within the domain, and the real require

ments for each of those descriptions, then the argument about elitism is

blunted because we can identify positions for which a software en

gineering education is required.

Bob Glass: Are there any disciplines we could incorporate in our cur
riculum that would help people learn to grasp the complexity and ar

bitrariness that Fred Brooks talks about?

Mary Shaw: We do have a set of abstraction techniques, as math

ematicians do.

Bill McKeeman: That takes care of the complexity. How about a

course in political science for the arbitrary factor?

Peter Freeman: It is important to keep in mind what Fred said about

applying the liberal education approach, but not everybody thinks that

way, learns the fastest that way, or becomes successful that way. It

seems to me that we also have to keep in mind, as educators, that
people have different learning styles and different capabilities. The real

issue is to be able to provide appropriate diversity in the educational

experience.

Joe Newcomer: The scientific discipline is one that I see lacking in
many so-called software engineers. In the simple task of measuring the

system, it is not enough to just run the time command. You need to

understand what you are measuring, the accuracy of your tools, and the

methodology for validating what you have done in order to be able to

apply it. As we go more toward the scientific discipline of software en

gineering, we need to have a bit more of this fundamental, basic, scien

tific training so people who come from diverse backgrounds - not

necessarily scientific ones - have some exposure to this piece of

methodology. I have noticed that computer scientists who come from

different backgrounds - mathematics, physics, economics, philosophy

- approach certain classes of problems differently. There is a distinct

gap there.

www.manaraa.com

Habermann 23

David Wortman: I have two comments. First, in spite of our best
intentions, it is often difficult to direct students to take the broadening
courses we would like them to take. Unless you have a heavily man
dated curriculum, the students can find countermeasures to avoid
courses.

Second, many of the proposed curriculums don't calibrate well against
where we traditionally think the effort goes in large software systems.
Statistics show that, in large systems, half the effort is spent in main
tenance, yet most curricula are light on maintenance. Similarly, a lot of
effort is dependent on documentation, but curricula are light on
documentation. And in many systems a lot of effort is spent on interface
design - often half the code is the input and the output interface. That
involves not only computer graphics, but also a lot of human factors in
order to understand the interface. It's something that isn't covered very
comprehensively in the curricula we are examining.

Mary Shaw: I will reply to David's first comment. Strong advising is
needed. An advisor who is looking out for the student and exercising an
advisor's responsibilities knows when a formal logic course in the
Philosophy Department is being used to finesse a breadth requirement.
And as for Peter's related remark about some students really digging in
their heels, some really do learn better and others just dig in their heels
because they don't think they like it.

Ed Smith: Underlying the discussion is an assumption that, somehow,
engineers producing hardware are dOing a much better job today than
engineers or programmers producing software. Is there a difference in
curiosity level? What is it that, after four years in a bachelor's program in
electrical engineering, for example, that produces someone who has a
set of attributes different from someone enrolled in a software engineer
ing program? Can we assume that hardware engineers do a better job
than software engineers?

Fred Brooks: When I moved from the engineering half of a project to
the software half of the same project, I found that the underlying building

disciplines were radically different. There was an engineering diSCipline

www.manaraa.com

24 Opening Discussion

in place whereby a prototype computing machine could be debugged on
a four-shift, around-the-week basis, with a 10-minute handover between
successive shifts. The new shift could pick right up and continue with
the debugging right where it was. How many software project teams
can do that?

Ed Smith: That may be the visibility.

Fred Brooks: Yes, but it also has to do with having an established set
of engineering disciplines. Moreover, there is a difference in the ex
perience of the practitioners. If you look at the hardware shops, the
average age of the professionals is greater from that in programming
shops.

Jim Collofello: I think another part of the problem is the complexity of
the effort given to it.

Ed Smith: You must reach a point where you feel as though you have
intellectual control over what you are doing. There is a certain decom
position process that has to take place in either one.

Jim Tomayko: I was talking the other day with a civil engineer who is
teaching a graduate-level, computer-based course at Carnegie-Mellon.
He told me that the bachelor's graduates are very good at designing
modules, but they can't produce the larger product. It made me ask
myself how they learn to design bridges. So, I think Ed's point is a good
one in the sense that the hardware engineers not only have a more
mature discipline, they also have more mature people hanging around
to learn from and work with. When you think about it, the oldest
software engineers are now the youngest executive vice presidents of
software engineering consulting firms - and there isn't the same kind of
continuity in that.

Dick Fairley: I have both a bachelor's and master's degree in electrical
engineering and my greatest disillusionment in electrical engineering is
that none of the theories ever worked in practice. Electrical engineers
have their problems, too.

www.manaraa.com

Habermann 25

Mary Shaw: To follow up on Jim's comments, my impression is that. by
and large, most civil engineers don't design bridges. The few very sin
gular, very conspicuous bridges are designed by the very few bridge
experts and the rest are routine modifications of standard designs. In
Pennsylvania we have a recognized, generic definition for bridge
designs in which you select a dozen or so parameters for things like the
number of lanes of traffic, elevations, traffic flows, and so on. The
bridge design is then cranked out automatically, but it is hedged about
with requirements that the design be signed off by a registered en
gineer.

This simplifies the search of the design space so you can rapidly
generate acceptable designs and select from among them based on
your criteria. The effect is that the engineers in the bridge business
don't design bridges from scratch. They design them by very substan
tial reuse of prior designs. Design information and the knowledge about
good, adequate, functional - but not great - design is systematically
encoded for reuse. That is a lesson we should attend to carefully.

Dick Thayer: The other day a colleague of mine pOinted out that when
we teach software engineering, we preach that software should be
developed and managed like hardware. Yet when we asked the
hardware (Le., electrician) engineering teachers how they teach
hardware engineering, the subjects of life-cycle development, project
management, and analysis before design are not mentioned.

Dick Fairley: But your students don't know that. As Bill Wulf said, you
are telling the perfect lie.

Mary Shaw: What do the academic engineers in the engineering
departments tell their students about mill practice?

Dick Thayer: I don't know the answer to that one, but I know we spend
a lot of time with the little pieces and parts.

Mary Shaw: It is my impression that, in practice, civil engineers do a
reasonable amount of advance performance layout and material
analysis and the collection of things that we preach.

www.manaraa.com

26 Opening Discussion

Gordon Bradley: We ought to separate what people do in education
from what people do on the outside. In getting my undergraduate en
gineering degree, I took only one design course; the rest of the time was
spent in doing mechanics. We were not expected to design something
immediately. An architect doesn't get to design a building the first year
out.

Civil engineering or architecture isn't a field like software engineering
where you declare yourself a software engineer with no academic back
ground. We hear the complaints that when students go out, they don't
know how to work in teams. They don't know how to design. They
don't know the politics. We shouldn't expect 22-year-olds to know those
things. Universities teach hard things, integrated things, very well.

I absolutely agree with Fred. We want an integrated view of things in
the curriculum. Wang Institute does this. But the notion of modules in
an academic, intellectual curriculum is what I could call a category error.
You can put a thing called curriculums into the category of things that
can be reduced to modules. However, we cannot modularize education.

We cannot modularize the core. We want to teach people how to think
like software engineers - and that is a long, integrated process that
cannot be broken up into one-day modules or pieces.

Mary Shaw: The role of design in undergraduate engineering education
has a long and mixed history that varies from university to university. In
the 50's or thereabout, when engineering education was substantially
revamped, Carnegie-Mellon added a significant design component to
the curriculum in conformance with the Carnegie Plan. It was well
received, both by students and by employers, because it was backed by
a large collection of courses that seemed reasonably effective. Those
courses proceeded as an architecture studio might proceed: you
present the problem, looking over the shoulder of the students as they
attempt to solve it. But, it came across to the engineering community as
a soft discipline. As engineering proceeded, more and more factual
things, with equations behind them, came into practice, and there was
increasing pressure to add these to the curriculum.

www.manaraa.com

Habermann 27

The effect of this has been a gradual erosion of the design component.
I suspect that there is some version of that history at each of your
schools. I don't take that as an indication that we should omit or neglect
design. A substantial part of what software engineers do is design. In
software engineering they probably do it earlier than in electrical en
gineering, and, therefore, the need is greater.

Gordon Bradley: It's possible that it went away because a lot of the

experience was a single individual at a single university.

Mary Shaw: When the great designer stops teaching the course, it is
hard to transmit that course to another instructor.

Gordon Bradley: That's right. When the Frank Lloyd Wrights go away,
the idea of teaching architecture goes back to the tried and true.
Universities do know how to teach some things very well. We only
seem to be able to teach design with great designers.

Fred Brooks: We should at least teach it with experienced designers.
My chemical engineering chairman friend says, "We do not hire green
Ph.D's to this faculty. They must have worked in a chemical engineer
ing industrial environment before we would consider them as teachers
at aiL" I would propose that for a software engineering program, as well.

Dick Fairley: I think in the university, the analytical will always drive out
the synthetic. Analysis will always drive out design. And in the long
scheme of the history of what universities are about, that is probably
appropriate. The point is that you need to distinguish between the goals
of professional graduate education and those of the universities. Given
the goals of universities, professional graduate education may not be
possible unless you have a separate school for software engineering -
someplace where that can happen apart from the normal reward struc
ture of the university, in the same way that medical and law schools are
set apart.

Nico Habermann: Drawing to a close, I think we can conclude that we
have many thoughts and opinions about our discipline. It isn't clear
what will emerge, but these discussions are useful. There is still a lot of

www.manaraa.com

28 Opening Discussion

room for different opinions and we welcome the possibility to influence

each other's thoughts on this subject.

www.manaraa.com

Section II
Part 1

Software Engineering Principles

The papers in this section generally present a broad view of software
engineering and of software engineering education. They offer fun
damental parts of or structures for a software engineering curriculum.

Gordon Bradley, Dick Fairley, Peter Freeman, Walt Seward, and Ed
Smith present particular perspectives of the goals and organization of a
software engineering program. Bob Glass describes software engineer
ing by contrasting it with computer science. Bill Richardson categorizes
the important problems in software engineering that a curriculum must
address.

Vic Basili, Nico Habermann, and Bill Riddle identify specific aspects
of software engineering that they consider essential: experimentation,
environments, and technology selection. Bill Wulf presents a case for
breadth in the curriculum, rather than concentrating on a few specific
methods.

www.manaraa.com

The Experimental Aspects of a
Professional Degree in Software Engineering

Victor R. 8asil!
University of Maryland

Abstract. Software engineering needs a support mechanism to aid in
the transition of research results into practice. Such a mechanism for
providing education, training and practical experience in software en
gineering could be provided by a special degree program: a Master of
Software Engineering (MSE). The key to such a curriculum is the
establishment of the equivalent of a teaching hospital through various
software development organizations: a teaching software engineering
laboratory. Combining classroom education with skill development,
the professional software development laboratory will use the latest
techniques and tools, and the practitioner will have the opportunity to
gain experience in using them under the supervision of experts.

Research results must be organized in a systematic way using well
defined methods and tools before they can be applied in a practical way.
Practitioners must be educated, trained, and have experience in apply
ing these techniques if they are to be used effectively. Thus educational
programs must act as the bridge between these research advances and
their successful transition to the wider audiences that can make use of
those results. The educational process should include an understand
ing of the underlying theory of the discipline, the training in the use of
the associated methods or tools, and the opportunity to develop skills in
their use. Without these three components, the technology cannot be
transposed into competent, standardized practices [110].

Software engineering is in desperate need of a support mechanism to
aid in the transition of the research results into practice. There is too
much ineffective and inconsistent use of the methods and tools avail
able, too little evaluation of their effects, and too little refinement and
adaptation of the techniques themselves.

These methods and tools of software engineering must be studied,
applied in a laboratory setting, and skills developed until the practitioner
becomes expert in their application.

www.manaraa.com

8a811i 31

A mechanism for providing the education, training and practical ex
perience in software engineering could be provided by a special degree
program, a Master of Software Engineering. There are a few programs
with similar aims already in existence, e.g., the program at Imperial Col
lege in London, the program at Wang Institute of Graduate Studies, and
the program at Seattle University.

It is important for the educational needs of the software community
that a new, standardized professional degree be created; a Master of
Software Engineering, along with the specification for a certificate for
support roles in software engineering. These degrees and certificates
should represent the structure of a new profession of software engineer
ing. The key to such a program is access to experimentation with the
methods and tools that must be provided the participants in order to
gain proficiency in their application for different problem domains in dif
ferent environments.

The medical profession provides a useful analogy for this kind of
education. Software engineering stands where medicine stood years
ago, on the threshold of university education. Today the profession of
medicine has a structure of position and practices that permits many
educational institutions to participate in training personnel for the profes
sion, not for individual organizations. For example, a surgical team is
put together from people educated at different institutions in different
specialties, of surgery, anesthesiology, nursing, radiology, etc. Such
terms are defined by the profession, not by the individual hospitals, with
a high degree of interchangeability among personnel of the same
speciality.

In contrast, software teams today are universally 'home grown,' their
activities are defined by their organizations, often by their team leaders.
As a result, there are few real standards of proficiency. It is well known
that people holding comparable jobs in software differ in productivity by
a factor of ten. It is less well known that software teams with com
parable assignments also differ in productivity by a factor of ten. The
advent of university education in software education will create stan

dards of proficiency which will permit organizations to recruit or procure
professionals of more certain productivity.

www.manaraa.com

32 Experimental Aspects of Professional Degree in SE

The foundation of the medical profession is the medical degree - a
professional, not a research degree. Although medical research goes
on, it is the function of specialists, typically PhOs, not MOs.

In the same way the foundation for software engineering will be a
professional, not a research degree, the MSE. The MS and PhO in
computer science will still be the basis for computer science research.
But the MSE will be the basis for the practice of software engineering.

The MSE has quite a different purpose than the MS and PhO in com
puter science. The objective of the MSE is consistent, competent prac
tice in software engineering - software development in all its phases,
usually in multiperson, possibly multiorganization, arrangements.

The key to such a software engineering curriculum would be the es
tablishment of the equivalent of the teaching hospital through various
software development organizations, a teaching software engineering
laboratory. Such organizations need to provide a form of prototype
laboratory setting for the use and refinement of software techniques
where software engineering students can have the opportunity to learn
and apply the studied methods and tools, measure and evaluate their
effect, and refine them for the particular applications at hand.

These organizations might be supported by industry or government.
Candidates might be such existing organizations as the Software En
gineering Institute or the Software Productivity Consortium, or any or
ganization whose charter involves the development of quality software
and the advancement of the field of software engineering. Such an
organization, in affiliation with the computer science department of some
major university, can create a teaching software engineering laboratory
that will provide MSE degrees. One of the constraints is that the results
of the efforts must be available for public consumption and admission
must be open to the public.

Results of the various practice activities, e.g., designs for certain
classes of problems in a particular design language, the statements of
the requirements for some applications, or the mechanisms for software
evaluation and assessment, need to be recorded and taught in the cur-

www.manaraa.com

Basili 33

riculum. They can become standardized and passed on to new genera
tions of software engineers to be further refined. The existing body of
knowledge at any time can be recorded and used in the training

process.

As an example of a program, the degree might be based on a two
year program, consisting of a mix of courses in the first year and profes
sional experience and skill development in the second year at the af
filiated organization. The course requirements would be twenty-four
credits of course work in the department consisting of twelve credits in
general computer science courses (e.g., Programming Languages, Sys
tems, Artificial Intelligence, Data Bases) and twelve credits in software
engineering specialization (e.g., Requirements and Specification,
Design and Development Technology, Software Management, Models
and Metrics for Software Management and Engineering). The profes
sional experience and skill development would involve working in the
software development laboratory, and managing, developing and
evaluating software projects under the tutelage of one of the profes
sional software engineers employed by the teaching software engineer
ing laboratory and associated with the university.

The curriculum will clearly evolve and change as the technology
evolves and changes so that it will always keep current with the latest
and best ideas. This would be the advantage of associating the
program with a University. The program can also evolve to a variety of
specialities in the various aspects of the discipline, e.g., management,
requirements.

The goal of the program would be to combine classroom education
with skill development. Since much of software engineering expertise
must be learned actively and skills developed by experience, a profes
sional software development laboratory will be an ideal place to practice
those skills. It will be using the latest techniques and tools, and the
practitioner will have the opportunity to gain experience in using these
techniques and tools under the supervision of experts. The students will
be able to fine tune their skills and become experts themselves. At the
same time the teaching software engineering laboratory will gain from

www.manaraa.com

34 Experimental Aspects of Professional Degree in SE

the use of these bright and capable students in the development of the
various tools and prototype systems.

The program will create a set of highly qualified software engineers
who will become key managers and developers of software. It is in this
way the needs of the software community can best be served since the
degree deals with the long range solution to technology transfer.

Acknowledgement: The idea of a professional Master's degree in
Software Engineering was first brought to my attention by Professor
Harlan Mills, and many of the ideas presented here have been in
fluenced by his vision of such a program.

www.manaraa.com

Cognitive Science View of Software Engineering

Gordon H. Bradley
Naval Postgraduate School

Abstract. The present foundations of software engineering are
reviewed and found to be inadequate for an effective theory of
software engineering. The properties that a foundation (or theory) of
software engineering should have are developed. The present and
possible future relationships between cognitive science and software
engineering are explored. A cognitive based perspective on software
engineering is outlined that offers the possibility of a coherent foun
dation for the field that will allow an ambitious and effective research
agenda.

Background

In all the years that I have taught software engineering, I have never
hidden from my students or my colleagues my low opinion about the
body of knowledge called software engineering. I don't think that the
software engineering literature provides a vocabulary or organization to
adequately describe the existing software processes much less provide
a basis to think about the field or to improve the state of the practice.
The most serious problem that results from this inadequate intellectual
foundation is that we have not been able to define a clear research
agenda nor identify an effective research methodology to advance our
state of knowledge [note 2].

In these years, I have learned much about the art, science and practice
of software development and maintenance and have become even
more enthusiastic about the production of software. Developing
software is great fun, and I have become more productive as I have
continued to read, teach and struggle with the software engineering
literature. However, despite the fact that I have become more
knowledgeable about and more effective developing software, the field
of software engineering has not provided an adequate let alone inspired
framework to organize my knowledge, experience and thoughts about
the software process. It is not an effective body of knowledge to identify
and evaluate effective mechanisms to advance the state of the practice
or to teach students about software production.

www.manaraa.com

36 Cognitive Science View of Software Engineering

In my lover's quarrel with the software engineering field, I have
struggled with the question of how we could develop an adequate and
precise vocabulary, a viewpoint, a framework and ultimately a foun
dation that would help us to identify researchable questions and to in
spire us to resolve them. I have tried to identify what attributes such a
result must have. I believe that such a view will incorporate into its core
assumptions the quantities of what Simon [89] called the "sciences of
the artificial." Our research paradigm will reflect that we study objects
that are synthesized to attain goals and to function - objects that are as
they are because they have been chosen rather than as they must be to
satisfy natural laws. As such we will be more like one of the social
sciences than one of the natural sciences. Notice that I decided this
without reference to the fact that current development of software is
mainly human based. The changing division of labor between man and
machine is based primarily on economic considerations, but this division
of labor does not change in any way the property that software is syn
thetic rather than natural.

The present software engineering literature is almost totally descriptive.
That is, it documents the state of the practice by describing how
software is now developed. This approach allows only a limited
perspective on how the process could be changed. I do not believe that
it will be possible to induce general results with a bottom-up atheoretical
research approach [note 3]. This is not only because the processes are
so complicated and so detailed that they can not be effectively studied,
but more fundamentally because a study of synthetic objects by bottom
up approaches will be incapable of distinguishing among what must be,
what is because of choice (design), and what is accidental (as it is be
cause it had to be something). I believe that like other sciences in their
formative stages, progress in software engineering will result from a top
down strategy to build theories (or models) that abstract properties of
the complex reality. This approach will admit (indeed require) positing

goals and intentions. In this approach, theory precedes observation,
indeed theory suggests hypotheses which constructs a position that
suggests experiments to evaluate the hypotheses. The observations
then support or reject the hypotheses which leads to gaining confidence
in or to redefining (or fixing or rejecting) the theory. This will be the basic
research methodology.

www.manaraa.com

Bradley 37

This view leads me to analyze all the experimental literature by iden

tifying a theory, an hypothesis and a result. I then say if "fill in the
theory" is true, I would expect "fill in the hypothesis" to be observed, in
the experiment I observed "the result". As you know, in at least 95% of
the experimental software engineering literature there is no stated
theory. For these papers I identify the best theories that I can based on
the discussion, experiment, results and conclusions, and then I fill in the
blanks. Do that for a few months or a few years and you will be as
discouraged as I about the software engineering literature. In most
cases there does not appear to be any reasonable theory and related
hypothesis that the experiment is to shed light upon. In many others the
authors draw conclusions from the results that are unrelated to any pos
sible theory that the experiment could support.

Must There be a Theory of Software Engineering?

Above, I decry a lack of foundation (or theory) for software engineering.
Before I try to convince you that I think I know a good direction to go to
build such a theory, you might ask me why I think that there exists such
a foundation for software engineering. We are here to work on a cur
riculum for an academic study of software engineering: upon what
should we base the act of faith that brought us here?

Since many software engineering papers, research proposals and sym
posia begin with a discussion of how much money is and will be spent
on software and how important software is to our economy, defense and
intellectual development, we might ask if the expenditure and the impact
on society alone justifies the curriculum, academic departments,
research institutes, and research and development expenditures
devoted to software engineering. This argument is not convincing; there
are many problems in our world that involve more money and more
problems and more impact on people than software and yet do not have
a specific academic field devoted to them. For example, alcohol and
illegal drugs involve more money and jobs, and impact more people
than software. The computer industry just passed the automobile in
dustry in terms of dollars, but automobile engineering existed as a cur
riculum for only a few years in a few universities (Similarly for railroad

www.manaraa.com

38 Cognitive Science View of Software Engineering

engineering that was an option of mechanical engineering in the early

part of this century).

A second argument is that there must be a field called software en
gineering because there is a demand for software engineers in industry,
and therefore, it must be possible to build a theory of software engineer
ing to teach. I call this "I teach software engineering, therefore it exists."
Counterexamples abound; there are education departments all over the
country with scant evidence of a theory of education. The recent intro
duction of computers into elementary school classrooms illustrates this
lack of theory. We know from controlled laboratory experiments that
computer based rote learning is more effective than human instruction.
The experiments using computers in the classrooms to teach rote learn
ing have been declared a failure. Either teachers don't know what they
are doing in the classroom or (what seems to me more likely) the com

puter scientists and education professors don't have an adequate
enough model about what really goes on in a classroom to build a sys
tem thatcan help students learn [note 4]. Business schools, profe~sors,
research programs abound with even less evidence that anyone knows
what a foundation might be for the subject.

Generally, academic disciplines can justify themselves in universities
only if they have an important problem and a set of approaches and
research methodologies that have been demonstrated to lead to sig
nificant results. For example, despite the fact that there is little money
and few jobs in linguistics, there are more linguistic departments in the
United States than software engineering departments. linguistics has a
set of theories and models and a scientific approach that has led to a
better understanding of language.

The bottom line is that there are no imperative reasons of the type
"there must be an intellectually sound field of study for software en
gineering because " Any proof of existence must be by construction;
we must show the foundation of the field and must demonstrate that its
use produces results that are not otherwise available.

www.manaraa.com

Bradley 39

If the essay so far has been at all convincing, then I have gotten you in a
good frame of mind for what follows. Either I will convince you that I
have a way to save software engineering and with it the livelihood of the
software engineering academics or we will all go home believing that
software engineering will quickly follow railroad engineering, automobile
engineering, urban studies, etc. and that all the academics should
quickly find jobs in industry or other academic fields.

What Is the Software Process?

The first step is to clearly define what the foundations of software en
gineering is a theory of. The present approach to software engineering
limits the object of study to a description of the current practice with an
emphasis on work products. An approach that hopes to be a foundation
for not only what is but also for what might be needs a broader perspec
tive. I will call this the software process. The software process captures
information that is then transformed and transmitted across space and
through time. The process transforms (e.g., requirements to specifica
tion to design to HOl to machine code) and transmits across space
(e.g., across a desk, a room, an organization or to a subcontractor) and
through time (e.g., to a requirements group to designers to program
mers to testers to maintenance people).

An important characteristic of this process for large projects is that the
amount of information is too vast to be mastered or even known by a
single individual. Also the representation of the information must stand
independent of any and all particular individuals. This requirement that
the totality of information which at any time resides largely within the
minds of individuals must be preserved as individuals come and go is in
my judgment the single most important distinction between systems that
are developed and maintained by a single individual or an unchanging
small group and those that software engineering is concerned with. I
believe that this property is the single most important determinant of the
difficulties we experience with large projects. Even if we could design
large projects with small modules with few interactions and thereby
decompose the information, the requirement to represent the infor
mation completely independent of particular individuals makes large
projects fundamentally different (and harder).

www.manaraa.com

40 Cognitive Science View of Software Engineering

Does an information view of software capture the dominant software
activities? Two studies surveyed how software personnel spend their
time:

Programmers at Bell Labs [29]

reading programs and manuals
job communications
writing programs
personal
miscellaneous
training
mail

Maintenance personnel at IBM [34]

study requests
study documentation
study code
update documentation
implement
test

16%
32%
13%
13%
15%
6%
5%

18%
6%

23%
6%

19%
28%

Maintenance is the most costly phase of the life-cycle; the first three
maintenance categories that could roughly be called "understanding"
account for roughly half of the personnel time. For projects where main
tenance costs dominate, roughly half of the life-cycle costs are as
sociated with reading and understanding code, documents, manuals
and other software products. Other data shows that the number of
words of documentation per line of code increases sharply with problem
size; this suggests that the production and subsequent reading and un
derstanding of software products is not only the most dominant activity
in software production but is also a factor in the nonlinearity of effort with
scale.

The software process creates, transforms and transmits information.
Software engineering is the creation of the various notations needed to
capture and transmit this information over time and space and the
development of techniques to transform this information from one nota
tion to another. With some notable exceptions (e.g., the translation of
HOl to machine code), the overwhelming bulk of the transformations of

www.manaraa.com

Bradley 41

information is done by humans with minimal help from machines. The
dominant activity is input to humans ("understanding") with relatively lit
tle output (modify code, write documents). Most of the energy that is
pumped into the system is consumed by the humans and most of this is
lost as they leave the system [note 5].

What Is Cognitive Science?

Cognitive science is a recent coalescence of several approaches to the
study of the mind. The original questions were first studied by the an
cient Greeks. The modern viewpoint focused about 30 years ago; the
term cognitive science has been used for the past decade. Cognitive
science is not so much a single academic/research field as a group of
researchers in several disciplines with a shared set of problems, as
sumptions and biases. The core disciplines are cognitive psychology,
artificial intelligence, philosophy of the mind, and linguistics with some
contributions from anthropology and neuroscience. By no means all or
even most of the researchers in the component fields regard themselves
as cognitive scientists; in fact, rival points of view are active in each of
the core disciplines.

For a field so young, cognitive science is lucky to already have an excel
lent intellectual and personal history of the field in Gardner [45]. For a
reader who is acquainted with the basic issues and problems in one of
the component fields, Gardner's book is an outstanding description of
the web of intellectual connections among the component diSCiplines.
Unfortunately it is not as effective as an introduction for the reader with
no prior knowledge in the field. A simple introduction is not possible
because the problems are hard, the concepts are tricky, and there is a

long history of false trails and tempting fallacies. My own introduction
was via reading in cognitive psychology including [19], [72] and [89]. My
seminar (CS4510 Cognitive Science and Computer Programming) in
cludes cognitive psychology with some readings in AI and philosophy.

www.manaraa.com

42 Cognitive Science View of Software Engineering

Gardner [45] lists five key features that characterizes cognitive science:

1. Cognitive science believes it is necessary to assume the
existence of mental representations. They believe that a
scientific field can successfully deal with abstract notions
like mind, thinking, etc.

2. The computer has been a strong influence on cognitive
science. The information processing model of the brain is
modeled after a Von Neumann machine.

3. Cognitive science feels that in the short run it is necessary
to factor out whenever possible emotion, culture, history
and other individualistic traits.

4. Cognitive science has a strong belief in interdisCiplinary
studies.

5. The classical Greeks' philosophical problems are ac
cepted by most cognitive scientists as part of their intel
lectual history.

Cognitive View

As described, the activities of software development and maintenance
are virtually all cognitive. That is, they are involved with the process(es)

of knowing or the act of knowing and could be described with terms like
perception, imagery, retention, recall, problem solving and thinking [note
6]. Some of the activities are carried out by computers, so they might
be called machine cognition. As described, contemporary software ac
tivities are done mainly by humans; so they involve human cognition.
The contemporary study of cognition provides a unified view of both
kinds [note 7].

A cognitive view of software engineering would assume that as human
factor researchers are designing physical artifacts that are to be com
patible with human senses, software engineers are designing artifacts to
be compatible with human cognitive processes. The information is held
mainly by people. When a critical maintenance programmer leaves a
project, the project has less information until his replacement has fully

mastered his job. The code and the documentation contain information
that is used in part to regenerate the information that the departed
worker had. To view the non-human artifacts ,-i¢' the exclusive objects of
study with the humans treated as black boxes is to ignore the bulk of the

www.manaraa.com

Bradley 43

information and energy flows and to lose sight of the motivations for the
design of the system.

A cognitive view does not accept the code or the processes generated
by the code as the principle objects of study. For one, the code is static.
The coding object of interest is really the thousands and millions of
meaningful variations of code. A given instance of the code contains
little information about what variations are possible let alone meaningful.
"To understand" the code means to be able to conceive and eventually
produce any of the other possibilities. Secondly, although in principle we
could automate the software production from specification through to
code, in practice we do not seem to be able to build such a machine for
large problems; and present attempts at small scale do not exhibit the
"understanding" that would allow it to make minor changes without
"replaying" the whole process.

Cognitive Science and Software Engineering'

What are the present and possible future relationships between cog
nitive science and software engineering? Clearly software engineering
is not and will not become a part of, or a major contributor to, cognitive
science because the goals of software engineering do not include any
attempt to resolve the long standing epistemological questions on the
nature of cognition. On the other hand, software engineering will be the
beneficiary of advances in cognitive science, but even more I think that
computer programming and software engineering will become the basic
experimental science upon which cognitive science will rest. That is, I
believe that the study of programming by individuals and the develop
ment of systems by software engineers will become the basic model for,
and example of, the study of cognition. Among the human tasks for
possible intense study by cognitive science like reading, language un
derstanding, stacking blocks, solving cryptarithmetic puzzles, why do I
think that computer programming will become the central problem?

1. Programming is about the right level of difficulty; reading
and language understanding are too tough and the work
on cryptarithmetic puzzles shows it to be too simple.

2. Because it is based on transformations of formal symbols,
it is easy to exclude the considerations of emotions, cul-

www.manaraa.com

44 Cognitive Science View of Software Engineering

ture, history and other factors that virtually all cognitive
scientists, for either practical or philosophical reasons,
want to ignore for the short run.

3. Software development is partially computerized; the
trends to automate more of the software task allows excel
lent opportunities to gather data. Programmers will be
come to cognitive scientists what rats were to generations
of behavioral psychologists.

4. Compared to other engineering design tasks, software
development can involve more levels of abstraction and is
less limited by physical attributes.

5. There is a large and growing expenditure on software that
makes money for experimentation available and suggests
economic returns from increased understanding of the
task.

6. The scale and modularity of large software development is
just about right when compared to a single individual. The
modularity allows small one person tasks to be studied.
The scale of the whole project has complexity of the order
of magnitude of a single individual.

Perhaps the most important reason that the study of software
(especially large projects) will be so important for cognitive science is
that it forces a sophisticated view of the differences between knowledge
(facts) and information. The machine allows us to easily and quickly
generate an absolutely staggering amount of data. We can get a list of
all variables, modules, and interconnections; and we can build program
graphs and do variable analysis. In addition to this static analysis, we
can simulate the process and we can obtain output, traces, execution
profiles and other dynamic measures. All this data can be economically
gathered, and if stored properly, it can be economically retrieved. Yet,
when that is all done, there remains a clear distinction between data and
understanding. It is this mountain of facts together with experiences
(human experiences) and intentions that yields the capacity for purpose
ful action that I call information. Facts plus X yields information, which is
the capacity for purposeful action. I claim that X is clearly cognitive, and

I am not convinced that X can be replaced by some formal symbol
process like production (or expert) systems.

www.manaraa.com

Bradley 45

Note that this analysis lays clear the fundamental hypothesis of expert
systems approaches to software (and other fields): namely that cog
nition is computation and that facts organized into rules yields infor
mation. Cognition is firing production rules and the apparent complexity
of what we call cognition and understanding are largely illusions
produced by the action of a very large number of rules (and that if AI
researchers only had bigger and faster computers they could
demonstrate behavior that we would call intelligent).

How might software engineering benefit from the study of computer pro
gramming and software development by cognitive science? First, I don't
think that cognitive science will make any direct contribution to our
methodologies. That is not their goal; they want to study cognitive
processes by means of studying programmers. We should not expect
otherwise; after all, after a half century of maze work by behavioral
psychologists there is no definitive evidence that present day rats are
any smarter than their turn of the century compatriots. Their work in
cognitive science will help us in another more profound way. They will
help form and sharpen our vocabulary to talk about and think about
software engineering. They will suggest to us an evolving conceptual
framework to clarify our thinking and allow us to develop a better
research agenda. And - getting back to the purpose of this workshop
- they will help us develop a vocabulary and organization that will allow
us to teach the theories and techniques of our field more effectively.

Examples of How Cognitive Science
Will Help Software Engineering

What evidence is there that cognitive science will help us develop a
foundation for software engineering? My present list is short; each item
is underdeveloped with more promise than substance. But even this
tentative beginning has gotten me excited about software engineering
research and has helped me think more clearly and to teach more effec
tively.

1. Knowledge domains· Brooks: [19] Brooks presents a theory of the
organization of the knowledge acquired by a programmer who under
stands a program. The programmer's knowledge is described as a suc-

www.manaraa.com

46 Cognitive Science View of Software Engineering

cession of "knowledge domains" that form a bridge between the
problem and the final executing program. Each of these domains (for
example, problem, algorithm, programming language, etc.) "consists of
a closed set of primitive objects, properties of the objects, relations
among objects, and operators which manipulate these properties and
relations" [19]. This theory involves two kinds of information - the first
is about things within a particular domain; the second involves trans
lating information in one domain to information in nearby domains. The
second type is clearly harder and more difficult to automate, and yet, it
is done effectively by humans. This analysis gives a clear view of what
is happening in the software process. The present software engineering
view focuses on the work products (objects within a domain) and is
largely blind to the processes (mostly human) that translate a work
product in one notation to a work product in another notation.

Perhaps more importantly Brooks shows the utility of a theory; he uses
the theory to make predictions about the effectiveness of documentation
and then compares it to experimental data. This general procedure
leads to an acceptance, rejection, or modification of the theory. The
software engineering literature is long on experiments, but these experi
ments are not as useful as they might be because of the absence of
theories.

2. Memory as reconstruction - Nelsser: [72] The classical view of the
human memory is that one retains memories as Slightly faded copies of
sensory experiences; they exist always and on occasion are aroused.
Neisser's view is that we do not recall memories; rather we reconstruct

them through an active (not passive) process and that this reconstruc
tion is based on "traces" of the experience that we retain. More
provocative (at least to me) is Neisser's proposal on the character of
these traces: "The only plausible possibility is that it consists of traces of
prior processes of construction" and "we store traces of earlier cognitive
acts, not the products of those acts" [72], p. 285.

This leads me to consider software documentation from a new prospec
tive. Typically documentation has not conferred significant benefits on
the writer or the reader. Current documentation has the classical view

www.manaraa.com

Bradley 47

as its basic premise: external memories (cognitive science jargon for
memories like notes that exist outside the mind) are the things that we
are trying to remember. Neisser says that we don't remember things
from internal memory this way; so I ask if we should build external
memories (documentation) in this way. We need to view documentation
as being dynamic with an entirely new concept of dynamic. Documen

tation should be constructed to help humans in the reconstruction of the
internal state called "understanding."

Documentation (unlike good literature) is boring to write and read be
cause we have so little insight on how people construct facts to under
stand technical material. We should devise more "intuitive" notations for
documentation. By intuitive I mean the nonverbal and partially verbal
knowledge about how the software really works. This knowledge can
then be used by the reader to construct or reconstruct an understanding
of the software. With high resolution dynamic displays we have a new
medium in which to rethink our approach to documentation. Together
with a more sophisticated view of human memory processes we may be
able to make some significant progress on documentation.

3. Schemata (context, environment) • Neisser: [72] Another aspect of
Neisser's theory of memory is that the construction is not limited to the
object being remembered. We remember in reference to "frames of
reference" or "schemata." Neisser presents a detailed discussion of
why this view is supported by common sense and by some experiments.
We would like documentation that only tells the reader things that
he/she does not already know. This is difficult to achieve because
documentation is prepared for potentially many readers. This analysis
suggests we should think about on-line documentation where the sys
tem has some knowledge about the state of the user's knowledge and
understanding. This suggests documentation systems that can use
some knowledge of the state of the user's knowledge to determine what
and how much material to present. This is clearly an ambitious under
taking. A more modest approach would eliminate from view some com
ments but put their retrieval under the control of the reader. For ex
ample, the comments and elaboration could be hidden behind the code,
the user would then display them if it was needed. This is not unlike a

www.manaraa.com

48 Cognitive Science View of Software Engineering

spreadsheet where the formulas are hidden or a outline program that
shows lower levels of the document only if requested.

4. Programming as a learned skill - Sheil: [87] In an outstanding
review of the software psychology literature, Sheil attributes the
unimpressive results of the behavior research in programming to "the
results of sloppy methodology, of a poor choice of hypothesis from com
puter science and of the considerable practical difficulty of investigating
complex behavior." He goes on to say the "basic problem is a fun
damental misunderstanding of the nature of the programming skill." He
discusses two flawed views and concludes with, "More fundamentally,
programming is a learned skill, and therefore, what is easy or difficult is
much more a function of what skills an individual has learned than any
inherent quality of the task." By this he means that the expert
programmer's skill is not exclusively or even primarily determined by
his/her innate ability nor is it based on some small body of expertise like
the syntax of a programming language. Rather the "the programmer's
expertise is made up of an enormous number of interrelated pieces of
knowledge." Now this view will suggest the futility of setting up experi
ments with a group of programmers, some doing a new technique and
the others not, and expecting significant differences. This also has im
plications for the training of programmers and their support on the job.
Our training and support must recognize that we need to support a
much larger set of facts for programmers, and the organization of these
facts may be different for each programmer.

One is struck immediately that the approaches to improving software
engineering suggested by this new perspective are harder than those
we have today. This seems right because we have always known that

the development of software was a task more sophisticated than the
intellectual tools we had to think about it. The harder and bigger
problems suggest multiperson, multiyear, well organized research ef
forts; but the potential reward for a more sophisticated approach is cor
respondingly greater.

www.manaraa.com

Bradley 49

Conclusion

In my view the integration of a cognitive science perspective into a
framework for software engineering offers us the possibility of a
coherent foundation for the field that will allow a clear and more am
bitious research agenda. Some of this "new view" has already been
developed by a few software engineering researchers with little or no
explicit mention of cognitive science; the explicit use of this viewpoint
will provide a vocabulary and organization to integrate this work. I think
it is premature to try to name this new view until it is more fully
developed. However, some aspects are coming into focus. We need a
better description of the software process. I think that the information
approach sketched here is a possible candidate. Any candidate must
clearly emphasize the transformation of information not just the products
and must not treat humans in the process as black boxes. As dis
cussed, the new view should proceed top-down. This says that we must
build relatively high level models of the process and that we are going to
have to include models of human cognition. We are going to have to set
aside our engineer's reluctance to deal with models of humans and with
models that rest on ill-defined concepts like thinking, design, remem
bering and so on.

Another implication of the new approach is that we are going to have to
think about new dynamics of the processes. We will have to think about
documentation that grows and adapts to humans or other parts of the
system that are also changing. Our views on training and the support of
programmers will have to better recognize the nature of the program

ming skill.

A final word about our enterprise here: as described, I think that a new
foundation of software engineering is needed and that a greatly im
proved version is within view. I don't think that a new organization will
be completed within the next several years, and like many of you I have
a software engineering class to teach next quarter. I think our time is
well spent clarifying the goals of a software engineering education, and
the effective approaches and techniques of our field. I am much less
comfortable with any attempt to impose a rigid taxonomy on the field or
to try to more carefully define our present vocabulary. Using a

www.manaraa.com

50 Cognitive Science View of Software Engineering

Christmas tree analogy, I think we can agree on the shape size and
purpose of the tree. We can work on the beautiful decorations that we
have and are building, but we should avoid locking in on today's struc
ture for the limbs. In short, in preparation for a better and more effective
foundation for our field, we should do nothing that would tend to further
legitimize in any way the present framework.

NOTES

1. This is a preliminary version of an essay on the foun
dations of software engineering.

2. One symptom of the inadequate research agenda is that
most, if not all, software engineering researchers are per
sonally involved in the development of software. I don't
think this is solely or even primarily because we want
hands-on experience. In a well founded field, researchers
pursue an agreed upon agenda that is related to, but not
identical with, what practitioners do. Another symptom is
that the literature tree in virtually all software engineering
subfields is shallow with many involving only one or two
papers and only one or two authors. The lack of a
coherent foundation makes it difficult to build on the work
of others.

3. I believe most of the experimental software engineering
papers should be characterized as bottom-up and ath
eoretical. It is not simply the absence of theories and
models that provide a plausible mechanism or explanation
for the results; in addition, most authors seem to really
believe in black box experimentation and apparently
believe that it is incorrect methodology to a priori posit a
theory that would predict and explain the results. If they
were psychologists, we would call such an approach be
haviorism.

4. With less theory and experience than education profes
sors, I wonder how we will be able to design a "software
environment" or "software factory" that will generate posi
tive benefits, let alone justify the cost of its development
and maintenance. This is surely a instance where
"nothing is more practical than a good theory."

5. From this perspective the development of large software
systems does not look that much different from other large
information intensive projects like developing a major
federal tax change. Public sentiment is translated into

www.manaraa.com

Bradley

legislative intent, which is translated into tax code, then
into regulations, algorithms for computation, manuals and
preparation materials, interpretations and judicial rulings.

6. Cognitive scientists are no more able or willing to give a
definitive definition of cognition than we are willing to un
ambiguously define module or user friendly.

7. A more controversial view held by a few is that there is
only one type of cognition, sometimes performed by
electro-mechanical devices and other times by organic
devices.

51

www.manaraa.com

Software Engineering Education:
An Idealized Scenario

Richard E. Fairley
Wang Institute of Graduate Studies

Abstract. The ideal scenario for software engineering education in
corporates a broadly based undergraduate program in computer
science, mathematics, science, social sciences, business, and
management; followed by one to two years of programmer-level work
experience; followed by a professionally oriented masters program in
software engineering; followed by a one to two year period of
professional-level apprenticeship; followed, for some, by training at
the doctoral level. Completion of each stage of the idealized program
qualifies the graduate for a corresponding level of duties and respon
sibilities as a software engineer. This paper describes an idealized,
comprehensive program of software engineering education, and is
extracted from the technical report, "The Role of Academe in Software
Engineering Education," TR-85-19, Wang Institute, October, 1985.

Many professions follow an educational model of broadly based under
graduate programs (political science for law, biochemistry for medicine),
professional graduate level training (law school, medical school), and
apprenticeship (law clerk, intern) under the guidance of skilled prac
titioners. This model seems appropriate for software engineering. The
ideal scenario for software engineering education thus involves a
broadly based undergraduate program in computer science, math,
science, social sciences, business, and management; one to two years
of programmer-level work experience; professional training at the
masters level; a professional-level apprenticeship; and, for some, train
ing at the doctoral level. Some of the functions and skill areas required
of professional software engineers are itemized in Table 1. In most
cases, the level of maturity and sophistication indicated in Table 1 can
only be achieved through a combination of undergraduate education,
work experience as· a programmer, professionally oriented graduate
education, and a professional-level apprenticeship.

The most desirable preparation for a software engineer is an under
graduate computer science major (including courses in computer en
gineering, math, science, business and management) with a minor

www.manaraa.com

Fairley 53

program of study in an application area; followed by one or two years of
work experience; followed by a master's program in software engineer
ing, and concluded with one or two years of apprenticeship to gain ex
perience in most, and preferably all, of the areas listed in Table 1. Fol
lowing this, some individuals may wish to pursue advanced practitioner
training, or to pursue a career in research and teaching. Doctoral
programs in software engineering would provide these opportunities.

This ideal scenario is depicted in Figure 1. Appropriate courses at the
undergraduate level are listed in Table 2 and master's level topics are
listed in Table 3. The structure of the master's program in software
engineering at Wang Institute is presented in Figure 2. A detailed
description of the Wang Institute Master of Software Engineering degree
program is presented in the accompanying paper, "Core Course
Documentation: Master's Degree Program in Software Engineering,"
Wang Institute Technical Report TR-85-17, September, 1985.1

MSE
u/g

program

professional
~ software

./~ engineer
apprenticeship

advanced study
research

~ doctorate
software
engineer

Figure 1. Ideal Scenario of Software Engineering Education

Table 4 presents the structure of a proposed PhD program in software
engineering. Doctoral programs in software engineering will be distin

guished from doctoral programs in computer science by the emphasis
placed on methods, tools, and techniques oriented to the technology of
software development and modification, and by research endeavors

1To obtain a copy please write to the author at the Wang Ins!. of Grad. Studies, Tyng
Road, Tyngboro, MA 01879

www.manaraa.com

54 SEE: An Idealized Scenario

such as experimental studies, case studies, and development of ex
emplar software artifacts, in addition to endeavors that advance the
theory and methodology of software technology.

Elective
II

Note: horizontal arrows denote
co- or pre-requisites

Project
II

Elective
III

Figure 2. Structure of the Wang Institute Master
of Software Engineering Degree Program

The importance of programmer-level work experience and professional
level apprenticeship in the education of software engineers cannot be
overemphasized. Much of the material indicated in Table 1 will be un
appreciated by undergraduates who have no basis of experience to un
derstand the importance or relevance of the topics. The need for
programmer-level work experience is analogous to the need for work
experience in business education: business curricula are, for th~ most
part, timely, appropriate, and important to modern society; yet, most stu
dents in undergraduate business programs view the programs as easy
paths to bachelor's degrees. This is partly because of the "soft" (non
quantitative) nature of much of the material in business curricula, but it
is primarily a result of the student's lack of maturity and real world ex

perience. After a few years of work experience, the material presented
in business schools is much more meaningful to students.

www.manaraa.com

Fairley 55

Apprenticeship at the post-masters level is also important in the
development of professional software engineers. The need for an ap
prenticeship in software engineering is similar to the need for an appren
ticeship in architecture, law, and medicine. Newly graduated architects
do not design skyscrapers, law clerks do not argue cases before the
Supreme Court, and interns do not perform open-heart surgery. Yet,
new software engineers often find themselves in analogous situations.

Apprenticeship with a qualified mentor allows the apprentice to apply
various methods, tools, and techniques of software engineering under a
guiding hand, and tempers academic treatment of the topics listed in
Table 1 with the realities of the profession. A somewhat formalized
apprenticeship also provides an avenue for the apprentice to infuse new
ideas and new technology into the sponsoring organization. The ap
prentice can experiment with, and demonstrate the feasibility of, new
ideas in a sheltered environment.

Some software engineers will have the desire and the ability to pursue
doctoral level training in software engineering. There are several paths
at the doctoral level: contributions to the theory and methodology of
software engineering, development of outstanding software artifacts, ex
perimental studies involving human subjects, and significant case
studies of technological and/or managerial issues.

Doctoral topics in software engineering must pass the litmus test of
orientation to technological and/or managerial issues surrounding the
development and modification of software products. In many cases, the
nature of the emphasis placed on a topic will determine its suitability as
doctoral work in software engineering or doctoral work in computer
science. Currently, doctoral students who pursue software engineering
topics in computer science departments often distort their true contribu
tions and emphasize minor theoretical points in order to satisfy the ap
propriate criterion for computer science.

It is important to note that many research topics in software engineering
are not acceptable computer science topics (for example, development
of software artifacts, experimental studies, case studies): similarly, many

www.manaraa.com

56 SEE: An Idealized Scenario

topics in computer science, such as theories of computational com
plexity or abstract families of formal languages, are not suitable software
engineering topics.

Computer science and software engineering are distinct, but strongly
related disciplines - just as physics and electrical engineering and
chemistry and chemical engineering are distinct but related. The dif
ferences in viewpoint and orientation to subject matter arise because
science and technology serve distinct intellectual, economic, and social
needs in modern society.

The career path for a doctorate in software engineering might be a
university career in research and teaching, or a career in industrial
research and development. The incentives and rewards in universities
and industry should encourage easy movement between the two
arenas. This would appear to be advantageous to all concerned parties.

Table 1. Functions and Skill Areas for Software Engineers

Requirements Analysis
Familiarity with the application area
Familiarity with analysis tools and techniques
Oral, written, and interpersonal communication skills

Functional Specification
Functionality, performance, design constraints, quality criteria, functional
interfaces
Ability to identify and specify appropriate abstractions, interfaces,
and constraints
Ability to establish quality and performance criteria
Familiarity with appropriate notations, tools, and techniques

Software Design
Thorough understanding of the hardware and operating system environment
Ability to decompose complex systems, specify interfaces, and document the
design using appropriate methods, tools, and techniques

Implementation
Familiarity with the necessary algorithms and data structures
Proficiency in the operating system(s) and programming languages(s)
used to implement the system
Proficient coding style to enhance understandability and
modifiability

www.manaraa.com

Fairley

Inspections, Walkthroughs and Reviews
Ability to effectively participate in inspections, walkthroughs, and reviews
Ability to function as a member of a team

Debugging and Unit Testing
Deductive and inductive problem solving skill
Familiarity with debugging and testing tools and techniques
Understanding of unit testing coverage criteria and ability to design test
cases to meet those criteria

Integration and Acceptance Testing
Familiarity with methods, tools, procedures, and techniques for integration
and acceptance testing

Configuration Management and Quality Assurance
Familiarity with tools and techniques
Ability to work with, and function as, configuration management and quality
assurance specialists

Preparation of Users' Manual and Maintenance Guide
Written communication skill
Ability to work with users and technical writers

Software Maintenance
Familiarity with tools, techniques, and procedures
of software maintenance
Ability to perform emergency fixes and scheduled enhancement, adaptation,
and repair.

57

Ability to work with customers and organizational procedures for change control

Project leadership
Ability to work within an organizational framework
Ability to plan a project and lead a team of five to seven programmers

Table 2. Topics in an Undergraduate Software-Oriented Curriculum

Computer Science
• Introduction to Computers and Computation

• Algorithms, Data Structures, and Structured Programming

• Computer Organization and Assembly Programming

• Computational Complexity and Analysis of Algorithms

• Computer Architecture

• Computer Logic and VLSI Design

• Language Translation

www.manaraa.com

58 SEE: An Idealized Scenario

• Programming Paradigms

• Operating Systems

• Systems Programming

• Database Systems

• Scientific Computation

• Expert Systems Technology

• Computer Communications

• Real-time Systems and Programming

• Performance Evaluation

Math
• Calculus

• Differential Equations

• Linear Algebra

• Appropriate Discrete Math

• Probability and Statistics

• Symbolic Logic

Business
• Introduction to Business

• Micro-Economics

• Financial Accounting

Management
• Theory and Structure of Organizations

• Human Relations and Organizational Behavior

• Oral and Interpersonal Communication Skills

Software Engineering
• Software Analysis and Design Methodologies

• Software Development Tools and Techniques

• Problem Solving in the Technological Disciplines

• Team Project in Software Engineering

Table 3. Topics in a Graduate Software Engineering Curriculum

Technical Issues
• Computing Systems Technology

• Tools and Techniques for User Requirements Analysis

www.manaraa.com

Fairley

• Practicum in Conducting User Requirements Analysis

• Preparing a User Requirements Document

• Applications of Formal Methods in Software Engineering

• Tools and Techniques of Formal Specification and Verification

• Practicum in Formal Specification and Verification

• Practicum in Rapid Prototyping of Software

• Survey of Design Methods, Tools, and Techniques

• In-depth Study of One or More Design Methods

• Practicum in Software Design

• Issues of Detailed Design and Coding Style

• Practicum in Detailed Design and Coding Style

• Practicum in Debugging and Unit Testing Techniques

• Practicum in Integration and Acceptance Test Planning

• Issues, Tools, and Techniques of Software Maintenance

• Conducting Reviews, Inspections, and Walkthroughs

• Development and Execution of a Test Plan

• Development and Execution of a Documentation Plan

• Format and Content of Software Project Documents

• Issues, Tools, and Techniques of Change Control, Configuration
Management, Quality Assurance, and Validation and Verification

• Standards, Policies, and Procedures in Software Engineering

ManagerIal Issues
• Organizational Structures and Management Concepts for Software

Engineers

• Customers, Contracts, and Business Plans

• Marketing and Distribution Considerations

• Lifecycle Models, Milestones, and Reviews

• Tools and Techniques for Planning a Software Project

• Practicum in Developing a Software Project Plan

• Software Economics: Cost Estimation Techniques, Risk Assess
ment, Cost-Benefit Analysis, and Trade-off Studies

• Tools and Techniques for Monitoring and Controlling Software
Quality and Programmer Productivity

• Tools and Techniques for Monitoring and Controlling Schedules
and Budgets

• Practicum in Technical Writing and Oral Presentations

• Motivational Issues for Programmers and Software Engineers

• Participating in A Software Engineering Team

• Leading A Software Project Team

59

www.manaraa.com

60 SEE: An Idealized Scenario

• Practicum in Software Engineering Team Projects

• Management of Software Maintenance Activities

• Standards, Policies, and Procedures in Software Engineering

Table 4. Structure of a PhD Program In Software Engineering

Breadth
• 12 Graduate Level Courses

• 6 from Masters Core

.4 areas:

• Software Engineering Methods

• Software Engineering Management

• Quantitative Methods

• Computing Technology

Depth
• Courses

• Seminars

• Directed Study

Dissertation Areas
• Case Studies

• Exemplar Artifacts

• Experimental Studies

• Theoretical Advances

Research Orientation
• Technology of Computing Software

www.manaraa.com

Essential Elements of Software Engineering
Education Revisited

Peter Freeman
University of California, Irvine

The Thesis

Ten years ago an intellectual basis for software engineering education
(SEE) was proposed that identified a set of components that should
underlie any curriculum in the field [38]. Those components included
computer science, management science, communication, problem
solving, and design; they stressed the integration of management and
technical issues in software engineering.

A review of that proposal convinces me they are still the right elements.
However, events of the intervening ten years and the current require
ments for SEE lead me to the conclusion that the design component is
being seriously underemphasized.

Further, I believe that the lack of progress in building the structures to
deliver SEE is highly problematic. This perception leads to some other
observations about SEE and what we should be doing about it. This
paper develops these two theses and suggests some directions we
should be taking.

Essential Elements Reviewed

The 1976 paper noted that, "We believe that five content areas should
form the basis of any software engineering curriculum." For each of the
areas (computer science, management science, communication skills,
problem solving, and design methodology), we addressed three topics:
how the content is used by the softw~re engineer, the range of
knowledge needed, and the depth of understanding required.

The paper implicitly stressed the principle that software engineering is
an applied activity that must carefully integrate managerial and technical
concerns and techniques. It went on to address the issue of teaching
software engineering (a topic expanded on in several later papers
[41, 101, 54]) and ended with the following:

www.manaraa.com

62 Essential Elements of SE Education Revisited

"Any such curricula must meet the following criteria:

1. Be based on the five content areas outlined here;

2. Be flexible so that they can change easily and be adapted to
substantive developments in the field;

3. Be based on computer science and be viewed as "applied
computer science." Other alternatives will lead to suboptimal
educational programs.

4. Prepare students to push forward the boundaries of
knowledge and techniques, not just apply what is already
known.

5. Include a large amount of realism and practical work.

6. Provide for multiple implementations, dependent upon career
objectives and backgrounds of students and upon the
academic home of the program;

7. Build on existing curricula to the extent possible."

I would write the same paper today. While much has happened in the
past ten years and while there are certainly some refinements I would
make, I think this is still the foundation on which software engineering
(and educational programs to support it) must be built for'the foresee
able future.

Let me note some of the needed refinements here without going into
detail. "Management science" should be broadened to "management";
many of the things the software engineer needs to know about manage
ment are not quantitative and never will be. "Design methodology"
should be broadened to "design practice" or just "design"; (more on this
below). Although implicit in the emphasis on computer science (in the
broad sense) in our original definition, the long range importance of
automated and/or mathematically based techniques in software en
gineering means that the software engineer must have a strong foun
dation in those parts of computer science that are relevant to effective
use of these techniques; the loose nature of the definition of computer
science argues that a tighter definition of what we intend for the
software engineer to know is needed.

My revisitation to this proposal and the added perspective of ten years
thus confirms (for me, at least) that it is indeed the proper foundation.
But, that does not mean I am san~uine about our present situation.

www.manaraa.com

Freeman 63

On the contrary, I am disturbed by two things, one procedural, one sub
stantive. Procedurally, I fear that the software field is like some of
America's basic industries, which for years refused to acknowledge that
changes were needed; the lack of progress in software engineering
usage and education is extremely serious. As an educator, I must take
a share of the responsibility.

Substantively, my experience of the past ten years argues even more
forcefully that design must be the integrative knowledge and activity that
is the core of software engineering. That part of the content of software
engineering education must be emphasized and put into effective ac
tion.

Before expanding on these two topics, permit me to share my percep
tions of some of the significant events (for software engineering) of the
past ten years and the current demands on and for software engineering
education.

What's Been Happening Since We Talked Last?

Although there have been numerous public sessions at meetings, un
doubtedly many private gatherings, and some curriculum development
efforts, I believe this is the first effort since 1976 [39] to address strategi
cally the question of where software engineering is or should be
headed. In reflecting on the past decade, I have tried to identify the
events or trends that are most relevant to our present considerations:

1. The general expansion of computing in all its aspects;

2. The creation of a significant software package industry, as
well as the great expansion of custom development ser
vices;

3. The microcomputer revolution and the consequent growth
of software development for small machines;

4. The emergence of microcomputers as a tool for the
software engineer;

5. The growth in number (and size) of very large software
systems;

6. The growing perception that automation (especially AI) is
important to the software engineer;

www.manaraa.com

64 Essential Elements of SE Education Revisited

7. Greatly increased investment in tools and, to some extent,
training for programmers;

8. The focus on the front-end activities of development;

9. Lack of attention to the design activity;

10. Creation of national research and technology-transfer
programs in a number of countries;

11. Failure of most universities to get into SEE activity;

12. Failure of most industries to do anything significant about
on-the-job training for software engineers;

13. Lack of integration of software engineering content into
traditional computer science or information science cur
ricula;

14. Lack of any significant breakthroughs or greatly deepened
understandings of software engineering;

15. The small increase in the general level of usage of what
we do know.

These are not listed in any particular order; further, I am sure you have

your own opinions about relative importance - indeed, you may not

even believe that some of these have actually occurred. They are,
however, the things that stand out for me. My purpose here is not to

discuss the ramifications of these events since that will show up in my

later comments. Rather, I will limit my discussion of them to the two that

help drive my major theses.

In a sense, when I review where we have been in the past ten years, I

feel that we have Simply jumped over the design activity. The early 70's
were characterized by attention to programming methodology. Around

1976 many people started to become concerned about the ''front-end''

activities of requirements analysis and specification; that concern con

tinues to the present. With some exceptions, there has not been an
analogous focus on what happens between the time the requirements

and specifications are "known" and the programming activity begins.

There is no question that front-end activities are critical and that some

high payoff can be had by improving them. What we as a field seem to

have skipped over, however, is the critical activity of taking the results of

those front-end activities and turning them into coherent systems - that
is, design, as distinct from programming.

www.manaraa.com

Freeman 65

When I consider how systems are built today by most organizations and
consider how they were built ten years ago, I don't believe we have
much of which to be proud. Likewise, when I ask what my students
know today about software engineering compared to what students of
ten years ago knew, I cannot see much difference. Over the past
decade the knowledge base of software engineering has grown, and
many improvements in the ways we can build systems have been
developed. The apparent failure simply to disseminate and use that
knowledge concerns me deeply.

Even though these perceptions alone are enough to drive quite a lot of
activity in SEE and technology transfer more generally, it is important to
ask what the world around us is asking for.

What are the Demands of 1986?

The demands of 1986 seem simple to me:

1. High quality software;

2. Flexible designs to permit easy modification and un-
foreseen usage with other software;

3. Shorter development times;

4. Better prepared professionals;
5. More people.

That these demands (and others that may seem more pertinent to you)
are not always attainable, and may even be contradictory given current
techniques, is clear.

We can certainly generate a long list of specific demands for SEE -
more training in use of formal techniques, better command of Ada,
ability to

organize and manage projects, and so on. While that may be useful
when trying to design a curriculum, it doesn't shed much light on
strategic considerations until we abstract them.

The task for SEE in the light of these general demands is to identify the
essential knowledge necessary to satisfy them and find effective ways

www.manaraa.com

66 Essential Elements of SE Education Revisited

of imparting that knowledge to the relevant professionals (and
professionals-to-be). That, of course, is nothing new, but may be worth
keeping in mind.

The core of my thesis is that while all the elements reviewed above are
important, design is the absolutely essential element that must be trans
mitted to all software engineers in some form. Further, I think there are
some ways of going about it that should have significantly more success
than what we have been doing. That is the subject of the remainder of
this paper.

The Central Role of Design
in Software Engineering

My long-standing interest in and study of design (see, for example, [36])
has led me to stress the importance of design in software development
[37], [40], [39], [42], [44]. The more I learn about software develop
ment, both abstractly and pragmatically, the more I am convinced of its
absolute centrality.

Rather than repeat what has appeared elsewhere, I want only to sum
marize those arguments here and move forward to consider what we
should be doing in the area of design education.

What Is Design?

Professor Simon's definition, "devising artifacts to attain goals" [88], still
captures the essence of what design is all about.

In software, the artifacts of ultimate interest are programs. Until recently
(and, still, for many people) those programs were small, produced by
one person, and were the only "tangible" result of the development
process. This, among other things, has led to a focus on the program
ming process.

There is no question that creating a program is a design problem. Yet,
the nature of the problem (devising a sequential set of instructions, in
most cases, and data structures that will carry out a desired
computation) conditions strongly what the program designer does.

www.manaraa.com

Freeman 67

When coupled with the small size of individual programs, this has meant
that program design (or programming) is not much concerned with
issues of structure in the larger sense of definition of the components of
a system and their interrelationship.

Software developers repeatedly learn (usually the hard way) that when
dealing with large systems of programs, it is precisely the issue of com
ponent definition and relationship that is critical. This level of design
(typically called architectural or general or preliminary design) should
thus be concerned with structuring the entire system (devising the

artifact) in order to attain the specific goals at hand.

The process of system or architectural design is one that naturally oc
curs between the specification activity and the detailed design of
programs. Because of its place in the process and because of the im
portance of the system structure that it establishes, system design is
where the developer has the opportunity to bring together all the con
siderations, requirements, constraints, and possibilities of the design
situation to achieve a superior product. It is this set of unique oppor
tunities that make this form of design so essential; the more so as our
demands become more stringent and our systems larger. Yet, we
largely ignore it in our educational programs and only infrequently do a
good job of it in practice. The connection is obvious.

The Breadth of Design

Design in the general sense of Simon is quite pervasive in software
engineering. We design when we correct a system deficiency by devis
ing a fix for it. We design when we create the specifications for a sys
tem. We design when we plan a set of tests to determine if our system
has a desired set of properties.

One of the continuing confusions is between internal and external
design. Most of the instances of design discussed above are concerned
with the way in which functions are implemented - that is, with the
internal design of the system. Most of the design knowledge and tech
niques of software engineering are concerned with this type of design.

www.manaraa.com

68 Essential Elements of SE Education Revisited

But, we are also designing when we decide what functions a system
should have, how they should behave, and what the relationship should
be between them. This design of the external characteristics of a sys
tem, usually carried out initially during specification, but often perverted
as development proceeds, is rarely treated as a form of design to which
some of the same knowledge can be applied. Even more importantly,
there is, or should be, an intimate connection between the internal and
external designs of a system.

Software engineering is essentially a synthesis activity. Everyone in
volved in the systematic creation of software-intensive systems is in
volved with design. That does not mean, however, that everyone is or
must be a master designer.

Some people need to know the most about external design. Others
need to focus on design changes, while others will be detailed desig
ners, perhaps in particular specialty areas. Managers need to under
stand the management of the various design activities as well as be
able to apply some of the design problem-solving techniques to

problems they face such as the design of an effective working group.

Design as a process and as a body of knowledge is the single thing that
is common to just about everything in software engineering. Every
software engineer must know something about design and the critical
path of technical development must be driven by the designer.

The Curriculum Implications of Design

There are three curriculum aspects relative to design:

• Processes of design

• Design knowledge

• Training mechanisms

Because there is much to discuss on each of these, and many different
viewpoints, I will only sketch enough here to indicate my meaning.

Design is a process. There are things to be done, decisions to be for
mulated, decisions to be made, results to be validated, information to be
collected. One can (and often does) proceed intuitively through design.

www.manaraa.com

Freeman 69

However, we do know some things about how to structure the process
in particular situations. Popular "design methods," such as structured
design or Jackson design, are examples of highly organized design
processes that have been packaged explicitly. Other knowledge about
how to proceed and how not to proceed in the design of large systems
can be codified and passed on to new designers. Techniques of
managing a design activity can be formulated and applied to practice
situations. The results on the process of using different types of design
tools can be studied. The history of design projects, both successful
and unsuccessful, can be reviewed. These are some things relating to
the design process that should be a part of the curriculum.

Design knowledge is harder to delimit. In one sense, everything known
about software or computers is knowledge that may someday be
needed by a designer in order to make a decision; it is the overall task
of SEE to winnow out the most relevant of this mass of information and
make sure that the software engineer has access to it.

There are some specific kinds of design knowledge that can be im
parted, however. One of the most important is the study of successful
design structures. Another is the study of system architectures as re
lated to specific functional architectures. Knowledge about trade-offs
between different algorithms or data structures, while clearly a general
subject, is relevant to the task of making design decisions. The con
tribution of different system elements to desired quality criteria such as
reliability is a highly relevant piece of design knowledge. As we focus
more on the process of design, additional topics will arise.

The third aspect of the design curriculum is the set of mechanisms for
training designers. Fundamentally, design is a skill which must be prac
ticed to be learned. A close integration of the preparation for doing
design (learning the processes and the design-oriented knowledge) and
the practice whereby it is really learned is essential; further, an often
overlooked aspect is the continuing feedback to the designer on his per
formance and the need for refreshers. (More on this below as I look at
the second issue: technology transfer.)

www.manaraa.com

70 Essential Elements of SE Education Revisited

Software Engineering Education - The Process

Let me return now to a consideration of the broader picture of SEE, not
just the design component. As noted in the introduction, I think that we
have been unsuccessful in the past ten years in getting software en
gineering established in any broad sense as part of the educational
scene.

That statement is in no way intended to diminish the accomplishments
that have been made: The establishment and continuing growth of
Wang Institute, the establishment of the Software Engineering Institute
at Carnegie Mellon University, the creation and successful operation of
IBM's Software Engineering Institute, the institution of several extensive
corporate training programs, the publication and successful sales of
several general textbooks are all important achievements. Yet, com
pared to what is needed (viewed either from the supply or the demand
side), we have barely scratched the surface.

There are no masters-level degree programs (to my knowledge) specifi
cally oriented to software engineering at a major university. Most
schools do not even have a software engineering course in the context
of a computer science curriculum. The one serious attempt at cur
riculum development [54] by a group that could represent a broad
spectrum of the field was stillborn, apparently the victim of turf wars.
Attempts to infuse some software engineering into other curricula have
had little success.

My own situation is illustrative. My department started a professional
master's program in 1975, aimed at top quality students who wanted to
pursue serious careers as computer science professionals. The most
popular option (with more than 50% of the students) within the program
was a concentration on software engineering. Although successful, the
department chose to phase out the program beginning in 1982 due to
lack of resources (both monetary and faculty) and a need to focus our
energies on research. The result has been good for the department, but
detrimental to our ability to provide software engineering education.

www.manaraa.com

Freeman 71

Two things are relevant in this vignette to understand why the field has
not made much progress in SEE. One is that we got little financial
support from local industry for the program; moral support was plentiful,
but it is hard to pay salaries with that. The other is that the pressures of
a research university are generally for increased research accomplish
ment; in a new field like computer science, the pressure can be par
ticularly strong. Further, in the face of severe shortage of faculty one
must strongly prioritize the allocation of resources.

I don't believe there are any silver bullets in SEE. We face a situation
that is fundamentally one of changing people's attitudes toward the im
portance of what SEE has to offer at a time when there are severe
shortages of people capable of providing it and in the face of increasing
competitive pressures that make the addition of what is seen as Simply
additional costs highly problematical. This state of affairs has existed
the past ten years and is worsening, if anything.

Viewed in this context, perhaps we have done as well as we could have.
The only constructive course of action, in any event, is to try to find

ways of moving forward more effectively. To that end, I have several
suggestions regarding the process of providing SEE; some of these are
not terribly new, so consider them a reaffirmation!

Some Steps Needed to Move Software Engineering
Education Forward

1. Establl~h more institutes like Wang. Although the number of
graduates that Wang is able to produce is small, it has high value to the
field as a showcase and model. I think the establishment of several

(probably less than six) more institutes like Wang would be beneficial.

They should probably be geographically dispersed and might well follow
fundamentally different patterns (although having two or three similar,
semi-competitive institutes like Wang would probably be useful).
Several could exist in the context of established educational institutions
of different sorts (indeed, Carnegie Mellon University-Software En
gineering Institute may turn out to be exactly this). One might be a
non-profit service center for a consortium of industries in some region;

www.manaraa.com

72 Essential Elements of SE Education Revisited

one might be profit-making (a fair amount of money is made delivering
courses of marginal value; why couldn't someone make a go of deliver
ing quality education?); one might be specialized to a particular industry
or application (for example, building software for automated factories).

Although I believe the need is great enough to warrant support by the
federal government, the current financial climate probably prevents that.
The issue, in any event, is to provide more visible examples of how to

provide SEE.

2. Integrate software engineering concepts Into undergraduate
curricula. There are a number of techniques and concepts of SE that
can be assimilated by undergraduates. Given that most computer
science majors go to work in industry, we could certainly raise the
general level of competence significantly and provide a better base for
further professional training if they were better prepared. Although
warming to the task slowly, most departments are at least receptive to
the idea of incorporating material into their curricula that will better
prepare students for their professional careers.

I believe this has not been done largely because of the lack of published
curricula by the professional societies. The existence of Wang and an
increasing selection of textbooks will help, but some formal curricula
suggestions by recognized bodies that represent a broad sample of the
community are urgently needed.

3. Create some master's programs In major universities. Univer
sities are just as competitive as anyone else. If two or three quality,
professional master's programs are started at leading universities, the
idea will catch on. How to do it is more problematical, but I suspect that
the combination of renewed support for education in general and the
competition among states for high-tech industry will produce some start
ups soon.

4. Encourage industrial retrainIng. Again, the changing tax laws and

budget situation remove some of the incentives, but the value should
still be clear. If industry needs N software engineers, we certainly don't
need to turn out N people educated and trained from scratch. Many

www.manaraa.com

Freeman 73

people already in industry have a good bit of the background necessary
to be good software engineers. Further, they often have the advantage
of maturity, leadership ability, and application knowledge. A good bit of
work needs to be done, however, to find ways of identifying those that
will most benefit from such retraining and ways of providing it in different
situations.

The American industrial system has often been faulted, properly I would
say, for throwing away its employees instead of retraining them. This is
a situation in which this would be foolish to an extreme. There simply is
no way that we are going to educate enough people from scratch to
carry out the tasks at hand, and doing the tasks with poorly trained
people is increasingly counterproductive. Further, one of the things that
seems clear about software engineering is that the more professional
maturity and application knowledge one has the better; many people
currently working have acquired these traits without proper training in
software engineering.

5. Establish a tradition of continuing education. Software engineers
need to have continuing professional education, just as medical doctors
do. As we establish the educational mechanisms for software profes
sionals, we must educate students to expect this and at the same time
start to provide for it.

6. Carry out some solid economic studies of the impact of
software engineering. Certainly one of the primary inhibitors to the
adoption of software engineering in practice has been the lack of much
believable supportive economic data (at least data that is publicly
available). Studies that strongly support the value of using software
engineering should make it easier to obtain the funding necessary to
provide the needed education.

There are other possibilities, of course. Similarly, there are a number of
suggestions for improving the actual delivery of SEE. In closing, I will
only mention the need in the area of design for educational structures
that permit students to alternate between the classroom and the
development shop (but under some carefully fashioned monitoring), al-

www.manaraa.com

74 Essential Elements of SE Education Revisited

lowing them to move through several cycles of obtaining formalized
knowledge and learning how to apply it.

Conclusion
The basic elements of software engineering education seem to be con
stant, although there are strong arguments that design should be the
essential ingredient that ties the other elements together. Our progress
in establishing SEE has been slow and the prospects for the future are
not much better; however, several strategies are suggested.

The survival of American economic capability depends in no small way
on our success. Providing software engineering education and making
sure that the knowledge so imparted is actually put to use is an essen
tial enabling technology for the renewal of our industries.

www.manaraa.com

Software Engineering and Computer Science:
How Do They Differ?

Robert L. Glass
Seattle University

Abstract. "Thermodynamics owes much more to the steam engine
than the steam engine owes to thermodynamics ... if we look at the
usual course of events in the historical record ... there are very few
examples where technology is applied science. Rather it is much
more often the case that science is applied technology" (from "Sealing
Wax and String: A Philosophy of the Experimenter's Craft and its
Role in the Genesis of High Technology," Proceedings of the
American Association for the Advancement of Science, annual meet
ing, 1983; D.O. Price).

am a software practitioner of thirty years experience, and an
academician of four years experience. My background traces back to
the origins of computing as a profession. Out of that long background, I
have formed some biases and discovered some truths. I would like to
share some of those with you here.

First of all, a definition: software engineering, I would assert, is applied
computer science. For those of you with an academic background, this
may be a sufficient definition. Just as there are applied mathematics
and pure mathematics, there can be applied and pure computer
science. For those of you with a practitioner background, however, this
definition may be begging the question. It defines one term with refer
ence to another that isn't that well defined. Let me explain.

Back in the 1950s, when I first began my professional career as a
programmer, there was no computer science, and there was nothing
called software engineering. Computer science came along nearly a
decade later, creating a science out of the existence of computers in the
same way that, as Price described above, thermodynamics was born
out of the existence of the steam engine. Then came software en
gineering, lagging computer science by another half decade.

www.manaraa.com

76 SE and CS: !"tow Do They Differ?

Those of us in the practice were a little uncomfortable with computer
science. It put a neat and tidy framework around some things that to us
weren't that neat and tidy, no matter how much we wanted them to be.

But when software engineering came along, it was like a trip home after
a long absence. Software engineering seemed to care about what the
good programmers had been doing for a decade and a half; it was
based on the reality of the practice.

Some examples might help here. Computer science, as the years have
rolled by, has come to be things like research into automated program
ming and proof of correctness. Software engineering, as the years have
rolled by, has come to be research into things like "empirical studies of
programmers." Computer science research efforts currently lie under
the cloud of condemnation contained in the Parnas papers on Star

Wars. Software engineering research is still evolving, but the claims it
makes for the future are at least buttressed by an understanding of the
realities of the present.

But enough of the past. Given that software engineering has a kinship
with software practice, and that computer science develops and formal
izes computing theory, what can we say about the difference between
software engineering and computer science as educational forces of the
1980s and beyond?

There are some things which good computer science and good software
engineering should have in common:

• They should present a menu of solution methodologies, not
a single blueprint. Single blueprints ignore the reality that
different kinds of applications require different kinds of solu
tion approaches .

• They should be taught by people who understand both the
theories of computer science and the realities of software
practice. For software engineering, the scale should be
tipped toward experience; for computer science, it may be
tipped toward theory.

www.manaraa.com

Glass 77

There are some things which good software engineering should stress:

1. A knowledge of computer science theory is a necessary
but not sufficient part of the software engineer's tool bag.

2. Computer science theory sometimes does not work in
practice. The software engineer must know enough about
the theory to know how to avoid these failures.

3. Software development experience really is worth some
thing. The grizzled veteran of half a decade probably has
achieved and surpassed several levels of evolving
maturity in the course of reaching that experience level
(assuming that five year's experience is not one year's ex
perience five times). Those levels of maturity need to be
passed on to junior people by experienced senior
educators.

4. The world needs bridge builders between theory and prac
tice. In the U.S., everyone wants to do the "R" of "R and
D." Poor theories will never be discarded and good
theories put into practice until someone is willing to play
the "D" role, trying out theories in a realistic setting to see
if they work. Software engineers should not only be able
to move into the practice of software smoothly, but they
should take with them the informed yet questioning mind
that allows them to pursue and evaluate new proposals for
professional improvement.

Seen in this light, the fields of computer science and software engineer
ing are siblings that have all the similarities and uniquenesses that si
blings in general have. It is important, in building an education program
in either field, to use the similarities as a foundation and stress the uni
quenesses as end goals. With that approach, we will be able to capture
the best of both disciplines - the framing and formalizing of computer
science, and the reality base of software engineering.

www.manaraa.com

The Environment for the Software Engineer

A. Nico Habermann
Carnegie-Mellon University

Abstract. The task of education and educators is threefold:

• to teach basic principles that have a lasting value and can be
applied in the analysis of events, phenomena and artifacts;

• to provide insight into the current state of the art and the his
toric development that led to this state;

• to teach a body of facts, procedures and mechanisms for the
application of knowledge.

The fundamental aspects of education apply to every discipline, in
cluding software engineering, which has the objective of producing
high quality software products and software tools. When software
engineering emerged as a separate subdiscipline, most of the effort
went into the development of concepts and methodologies. It has
become clear in recent years that these concepts and methodologies
will not be effective without the support of integrated tools and task
oriented programming environments. It is therefore necessary to pay
sufficient attention in education to the engineering of these tools and
environments.

Introduction

It is often hard to define a discipline accurately in terms of primitive
notions that are familiar to everybody. For instance, an attempt to
describe computer science might be: "Computer science is the discipline
that involves the study of algorithms, including their properties and
issues of representation, implementation and execution, and that in
volves the design and application of algorithms and supporting equip

ment for the creation of information systems that can be used for infor
mation retrieval and for the generation of new information." Although

such a definition characterizes the field in general terms, it clearly fails
to convey the nature of the problem domain in which computer scientists
are interested. It would be hard to derive from this description, for in
stance, that programming languages constitute a major topic of interest
in computer science. It is not uncommon that scientists avoid all
problems of describing their discipline with a phenomenal characteriza
tion such as: "Computer science is what computer scientists do."

www.manaraa.com

Habermann 79

In the case of engineering, we can do a little better than: "Engineering
is what engineers do." The Dictionary of the American Language says
that engineering is the application of scientific knowledge or technical
know-how to the creation of mechanisms that facilitate the achievement
of a goal. This description applies well to various forms of engineering
as we know them, including civil engineering, mechanical engineering,
chemical engineering and electrical engineering. It also applies well to
software engineering, where the mechanisms are software tools and
programming environments, and the goal is the production of reliable
and user-friendly software systems that perform well and that are con
structed according to specs, on time and within budget.

It is interesting to note that software engineering has the peculiar
characteristic that the mechanisms it creates are of the same nature as
the goal it pursues: both mechanism and goal are software systems.
Mechanical engineering is in some respect in a similar position since it
may devise machines to produce machines. Civil engineering, on the
other hand, is not likely to employ mechanisms of the same nature as its
goal: the construction of an airport, for example, requires the use of
heavy machinery and trucks. There is no particular need for another
airport as one of the construction tools.

The point I wish to make in this short paper is that an important aspect
of software engineering is its application to itself and that this obser
vation is relevant to software engineering education. Since mechanism
and target are both cast in software, one may expect that similar
development support tools will work for the creation of both target and
mechanism. After a brief discussion of the foundation of software en
gineering and the nature of education, the application of software en
gineering to software engineering education is further discussed in the
last section.

The Foundation of Software Engineering

In order to do a good engineering job, one has to understand both the
target product and the available means very well. This implies that the

software engineer must understand the construction and application of
software systems and also the techniques for analyzing and improving

www.manaraa.com

80 Environment for the Software Engineer

systems. This is obviously a tall order, because it requires the software

engineer to know the core of computer science and to be more than

familiar with application fields such as business management or natural

sciences. It also requires him or her to know the typical techniques and

mechanisms that have been developed to control and improve the

software production process.

Since a thorough knowledge of the main body of computer science is a

necessary prerequisite, software engineering should not become the

major topic of study until a level has been reached equivalent to that of

a senior college undergraduate in computer science. If an under

graduate program in computer science is to prepare for further study in

software engineering, it should emphasize programming languages and

systems and leave room for electives in other disciplines such as busi

ness administration or physics and chemistry. It is clear that, if one also

takes into account the need for sufficient background in discrete math

ematics, computer technology and computer literacy, the proper place

for a software engineering program is at the master degree level as one

of several possible specializations in computer science.

The Nature of Software Engineering Education

In the planning of the Software Engineering Institute, we made a clear

distinction between training and education [6]. This distinction has been

clearly stated in various documents and is also reflected in the structure

of the SEI, notably in the creation of a Technology Transition & Training

Division and a Research & Education Division.

The emphasis of training is on "how to do a job" rather than on analyz

ing the job and on considering alternative methods for carrying out the

job. Education, on the other hand, is always analytic in nature: it not

only presents new material to students, but it also teaches the students

to discover common features as well as differences and to make relative

value judgements. Another difference between training and education

relates to an aspect that many science and engineering disciplines have

in common: the experimental approach to testing a hypothesis or to

providing evidence for an idea or a viewpoint. While training concerns

primarily the acquisition of factual information and know-how, a major

www.manaraa.com

Habermann 81

aspect of education is to teach students to apply the scientific method of

analysis and experimentation.

The task of education and of educators is
• to teach basic principles that have lasting value and can be

applied to the analysis of events, phenomena and artifacts;

• to provide insight into the current state of a discipline and
the development that led to this state;

• to teach a body of facts, procedures and mechanisms for
the application of knowledge.

In this paper, we will concentrate on the first issue, the basic principles.
Software engineering builds on principles that can be categorized along
three dimensions inherent to the construction of large software systems.
These dimensions represent

• the quality of the target software product;

• the process controlling the development of a product;

• the interaction and communication between people creating
a product.

The first category, which may appropriately be labeled "product control,"
consists of product properties such as reliability, user-friendliness, per
formance, fault-tolerance, etc. Software engineering involves tools and
techniques that measure software products with regard to these various
properties and help us improve products along this dimension.

The second category, for which "process control" is an appropriate
label, comprises issues concerning what is generally known as the
"software lifecycle," which describes. the development of a software
product as a sequence of steps that starts with requirement specifica
tions and leads through design specifications, implementation, system
construction and testing, and finally to software maintenance [Fa85].
Recent experience has shown that these steps should not be con
sidered as successive development phases ordered in time. It has, for
instance, generally been recognized that requirement specifications are
initially bound to be incomplete and need refinement when design and

implementation take place. It seems to happen frequently that specifica
tions are still being modified when software has reached the main-

www.manaraa.com

82 Environment for the Software Engineer

tenance stage [12]. One should therefore treat these steps as coexist
ing product views, each describing a different aspect of the software
product in which we are interested. Requirement specifications
describe the purpose of a system, design specifications the functionality,
implementation how the system works, system construction how the
pieces are put together, testing how well it works, and maintenance
what kind of trouble was encountered, what changes were made and
which extensions were implemented.

The third category is generally known as "project management." It
deals with issues that arise when people have to work together in an
organization that is charged with the creation of a product within a
predetermined period of time and with limited resources [18]. The task
of project management is twofold:

• to enforce rules of behavior, and

• to generate and provide access to project information.

Rules of behavior primarily concern policies on documentation,
modification rights and deadline control. When code or documents are
modified, programmers must be forced to leave a trace of their actions
and should not be able to bring a project into an ill-defined intermediate
state. It is also likely that one wants to enforce certain documentation
and coding standards that make it possible for programmers to read and
use each other's material. The purpose of project information is to en
able programmers to inspect the overall state of the project and to as
semble versions of program modules into system configurations.

The partitioning of the software production process into the three dimen
sions, "product control," "process control," and "project management,"
can serve as the basis for a coherent software engineering curriculum. It
can be used to categorize the principles of software engineering and
can also be used to survey the current state of the art. Once a good
overview of the existing techniques is assembled along the three dimen
sions, one can analyze the status of each individual piece with respect
to availability, accuracy, adaptability, formal foundation, etc.

www.manaraa.com

The Educational Environment

Software engineering concepts were first developed in the early
seventies when programming-in-the-Iarge became an issue. Their
development is quite different from that of other subdisciplines such as
operating systems, programming languages and'" databases~- These
other subdisciplines gave rise to a large variety of products, all built
around an increasing body of common knowledge and expertise. This
has unfortunately not been the case in software engineering. Early on
in the development, an irreparable rift emerged between two camps,
one consisting of proponents of formal verification and the other consist
ing of those promoting the informal method of code testing. That rift has
not been healed to this date. In addition, many measurement and
development support tools have been developed in an ad hoc fashion
and in relative isolation. The result is a large collection of tools ade
quate for specific purposes, but lacking coherence and common prin
ciples.

The lack of coherence in software development tools is apparent in the
programming environments that most programmers work in today. It is
common that people work with text editors that don't know anything
about programming languages, with programming languages that don't
know anything about the file system and with debuggers that under
stand object code, but not the source language in which programs are
written.

The recent development in the design of integrated programming en
vironments is an encouraging sign of improvement. There is a general
tendency to create environments that provide coherent sets of tools in
support of specific software development tasks. There is no doubt that
a major task of software engineering in the near future is going to be the
production of marketable programming environments that offer in
tegrated sets of task-oriented tools.

The main point to be made here is that a good program in software
engineering must integrate the traditional oral and written communica
tion between teacher and student with experimental programming en
vironments. These environments should contain software engineering

www.manaraa.com

84 Environment for the Software Engineer

tools that can be analyzed and applied by the students. The motivation
for such an integrated organization of the curriculum is twofold:

• first, we argued that software development and measure
ment tools are objects of study and apply to the software
engineering process itself;

• second, students should be provided with a rich underlying
environment in order to carry out worthwhile software en
gineering experiments.

Software engineering and operating system courses have suffered for a
long time from a lack of adequate programming environments. Experi

ments in these classes have usually failed, because students had to
implement even minimal support environments for their work from
scratch. The resulting environment was usually too poor to perform any
realistic experiments and absorbed most of the time available for doing

a class project.

Having a good environment available to support education has proven
to be extremely valuable for programming-in-the-small as has been
demonstrated by systems such as the Program Synthesizer and Gnome
[93, 46]. Benefits will be even greater when environments support the
complex tasks of programming-in-the-many and programming-in-the

large (software engineering).

The programming environment for a software engineering curriculum
must provide common software engineering tools for the development
and measurement of software products and the software production
process. It is totally inadequate to rely on a traditional environment
which provides a text editor, a compiler, a debugger and a file system
and, at best, an additional text preparation facility.

Curriculum design should not proceed without a parallel design of one
or more educational support environments. If this task is taken into ac
count from the start, there is good hope that the curriculum will have an
impact on the design of the support environments and vice versa. An
additional benefit is acquired if the development and enhancement of
the support environment(s) is considered as a continuous task that
keeps up with further developments and revisions of the course

www.manaraa.com

Habermann 85

material. The experiences with the Program Synthesizer and with the
Gnome system are very encouraging in that respect. Both systems have
progressed considerably since their inception and have included many

facilities that provide specific support for the courses taught with them.

It seems pretty clear that software engineering will undergo further
automation in the future. There exist right now some interesting software
development systems and language systems exist that provide in
tegrated tool sets for the task at hand (e.g., Interlisp [94], DSEE [62]).
However, a serious drawback of these systems is their handcrafted na
ture. These systems are examples of designs that applied good prin
ciples, but provided little flexibility or evolution. It is to be expected that
further automation of the system generation process will be one of the
major challenges in the near future. Possible approaches to further
automation have been explored by the SyntheSizer Generator project,
the Gandalf project [73] and others.

Conclusion

The main objective of software engineering is to facilitate the production
of high quality software systems within budget and on time. Software
engineering is peculiar in that its target product and the mechanisms to
create a product are of the same nature: both are software systems. As
a result, an important activity of software engineering is the construction
of tools to construct tools. A software engineering curriculum must pay
attention to this important aspect of software engineering. It must sup
plement oral and written communication with a rich software engineering
environment that provides an integrated set of tools first for analysis and
application, but also for the construction of new tools.

A proper framework for a curriculum in software engineering is provided
by a partitioning of the field along three dimensions, respectively
describing issues involving the software product, the development
process, and the management of a project. This framework can be

used for classifying the principles underlying software engineering and
for overviewing the existing tools and mechanisms.

www.manaraa.com

86 Environment for the Software Engineer

Educational support for software engineering must be developed in
parallel with a curriculum design so that the one can have an impact on
the other. It is totally unrealistic to rely on software support that stu
dents write during the course. Such an approach always leads to poor
support and absorbs most of the available time in class and out. As a
result, the experiments carried out are inevitably small in scale and nar
row in scope. Creating a permanent educational support environment
has the additional advantage that gradual improvements can be tuned
to changes and revisions of the curriculum.

www.manaraa.com

Considerations for Graduate Software Engineering
Education: An Air Force Perspective

Walter D. Seward
Thomas C. Hartrum

Gary B. Lamont1

Duard S. Woffinden
Air Force Institute of Technology

Abstract. This paper presents a graduate curriculum for software
engineering education, as proposed by the Air Force Institute of Tech
nology (AFIT). In order to define such a curriculum, it is first neces
sary to define what is meant by the term "software engineer," and
what capabilities are expected in a graduate of such a program. The
process of "software engineering" is examined in the context of re
quirements for software system development and management within
the Air Force. These requirements help define the fundamental con
cepts and techniques, as well as the support tools, which must be
integrated into an effective curriculum for software engineering. The
program presented incorporates both the theory and practice of
software engineering. The proposed curriculum for a Master of
Science degree with a major in software engineering is based on
AFIT's experience with software engineering education and its on
going contact with many Air Force agencies involved in software
development. Many of AFIT's student thesis efforts have involved
large-scale software developments which often extend from student to
student over several years. This paper presents this program, along
with supporting discussion of program objectives and course content.

Introduction

A basic requirement for developing any educational curriculum is the
specification for the expected capabilities of the graduates. The
capabilities required of the graduates must be defined in the context of
the generally accepted definition of a given discipline, as well as the
specifics of known users if possible. A curriculum for software engineer
ing education therefore depends upon an accepted definition of software
engineering. Since the creation of the term "software engineering" in

1967, there has been a great deal of interest in the subject and its
definition. The impetus for the creation of the term was the perception
that a "crisis" existed in terms of the development and management of

10n sabbatical, Department of Computer Science, Wright State University, Dayton,
Ohio.

www.manaraa.com

88 Considerations for Graduate SE Education

software systems. Since that time, significant effort has been expended

in the pursuit of methods and tools which will lead to the design and

production of reliable, efficient, and cost effective software products. In

addition to this effort, there have been many attempts to define the dis
cipline of software engineering and its relationship to other disciplines

[12], [16], [29], [57], [80], [81], [90], [103].

Software Engineering and Software Engineers

A precise definition of software engineering cannot be made any more

than can one for electrical or mechanical engineering. The field of

software engineering covers many areas of interest, as does electrical

engineering. The profession of engineering is continually evolving. As

technological developments create new opportunities for the advance

ment of society, new fields of engineering develop in response to the

needs of society. For example, computer engineering and aerospace
engineering, which were originally facets of electrical and mechanical

engineering, respectively, have developed in response to new tech

nological capabilities. Furthermore, as technology advances, problem

and solution approaches tend to converge in certain areas, for example,

computer engineering and VLSI engineering. Likewise, software en

gineering is a discipline which has evolved because of a specific re

quirement of society.

An engineer is one who solves problems in a technical area. This in

cludes both the ability to analyze existing systems to determine problem

sources, and the ability to analyze requirements and then apply scien

tific principles to design a system to satisfy those requirements. It is the

process of synthesis which distinguishes an engineer from a scientist. A

software engineer is an engineer whose primary field of expertise is

software systems. A software engineer applies scientific principles to

the design of efficient, cost effective, and reliable software systems

which meet a specific need of society.

In defining software engineering and the functions of a software en
gineer, it is equally important to examine those tasks which are not the

normal functions of a software engineer. Just as electrical engineers in

properly supported environments do not, in general, wire circuits, but

www.manaraa.com

Seward, et al 89

have technicians available to do so, software engineers should be able
to write and debug computer code, but should not do so as their primary
task. Rather, they should be involved with the analysis, modeling,
design, and development of software systems to solve practical
problems. Note that the standards by which such systems are evaluated
include both technological and management issues.

Software Engineers in the Air Force

Within the domain of software engineering, the Department of Defense
and the Air Force find themselves in a somewhat unique situation. The
dramatic increase in the numbers of computer-based systems in use in
the Department of Defense is well documented. The most significant
increases have been in the number of embedded computer systems.
Furthermore, many of these systems are very large scale, such as sys
tems for command, control, communications, and intelligence (C31).
This increase in computer-based systems throughout the military ser
vices has dictated an increase in the level of knowledge required by
both the personnel who are involved in the design and implementation
of these systems, and those who use and maintain them. However, the
brunt of responsibility for ensuring that the fielded system is reliable,
responsive, and maintainable falls on the software engineer. These
systems are becoming increasingly dominated by software, and
software provides the primary basis for user interaction with the system.
Further complications arise because much of the actual development
and implementation of these systems is done by contracting organiza
tions, which depend upon the service's project office for requirements
definition, guidance, and assistance throughout the system develop
ment. In order to meet the requirements for software engineering in this
environment, a curriculum in software engineering must ensure that
graduates possess a number of capabilities in both technical and
management skills.

Requirements of a Graduate Software Engineer

A graduate software engineer should possess a number of capabilities

which span both technical and managerial skills. The graduate must
have a firm grasp of the fundamental elements of software system

www.manaraa.com

90 Considerations for Graduate SE Education

development. These include programming (in several languages, both
assembly level and high level languages), data structures, operating
systems, and an understanding of hardware architectures and their
relationship to software systems in differing environments. The latter is
especially critical in the area of embedded systems, which is one of the
Air Force's primary requirements for software engineers. Furthermore,
the engineer must be able to apply the concepts and methodologies of
software engineering to practical problems. This includes the ability to
determine the proper tools and methodologies most applicable to a
specific problem, and the ability to apply them in the proper manner.

Management of a large software or embedded system project is also
required of software engineers in the Air Force environment. Manage
ment of the development team throughout the definition and implemen
tation phases, and configuration management of the system once
deployed are both required. The necessary management skills include
the ability to apply techniques of software cost estimation to specific
applications, to understand the software acquisition process, and to be
able to apply effective leadership to the planning, control and main
tenance of the project.

Graduate Curriculum in Software Engineering

The objectives of the Air Force Institute of Technology's (AFIT) graduate
program with a specialization in software engineering are to provide the
student with an integrated curriculum of both analytical and hands-on
courses oriented toward the identification and solution of practical
problems in software engineering. These objectives are in addition to
the overall goals of the Graduate Computer Engineering and Graduate

Computer Systems programs. The goals of these programs are to edu
cate graduates so that they are able to assimilate new technologies as
they evolve and maintain their technical expertise throughout their
professional careers. Students entering the program must have a
bachelor's degree in computer engineering, computer science, math
ematics with computer emphasis, or another scientific or engineering
field with computer system experience. Students are expected to satisfy
the basic mathematics requirements stated for the Accreditation Board

www.manaraa.com

Seward, et al 91

for Engineering and Technology (ABET) and the Computing Sciences
Accreditation Board (CSAB) degrees of computer engineering and com
puter science respectively. In addition, as a minimum, the students
must have had experience with high order language programming with
Ada (due to the DOD environment), basic computer architecture and
assembly language programming, algorithm design, and digital logic
design and application. Those students who do not have this back
ground must make-up these deficiencies during the program.

A distinct advantage for AFIT is the stronger than usual maturity and
experience, both technical and managerial, of most of the students. Al
though some students arrive directly from undergraduate school, most
have had one or two Air Force assignments where they have managed
or worked on computer based systems development. This experience
and maturity provides them with an appreciation for the real world
problems that a software engineer must face.

At AFIT, software engineering is considered as an area of specialization
in computer engineering or computer systems. The graduate program
in software engineering at AFIT has been evolving for the past four
years and continues to evolve as the resources necessary to implement
the desired curriculum become available. These resources include both
the necessary manpower and computer hardware and software.
Presented here is the curriculum structure planned for the coming year.
Also presented are the plans for near term changes.

Assuming that the background requirements are met by the student, the
curriculum consists of a core sequence, a specialization sequence, two
graduate level math courses, formal courses in technical writing and
research methods, an independent study (thesis), and sufficient tech
nical electives to create a program that adequately covers a broad
spectrum of topics, yet allows depth in one or two areas of computer or
software engineering. In the eighteen month program at AFIT, the stu
dent will take seventy-two hours, with at least twelve hours per quarter.
Since the degree requirements are for forty-eight credit hours of
graduate courses including the thesis (12 credit hours), a student with a

strong background can either graduate in less than eighteen months, or

www.manaraa.com

92 Considerations for Graduate SE Education

can expand his program by in-depth study in more areas of computer
engineering.

The Sequence of Core Courses

The core sequence provides the coordinated sequence of courses that
integrates the principles of computer hardware, software, and
hardware/software interfacing to insure that the software engineer is
able to apply software system development to both stand-alone and em
bedded computer systems. The problems associated with embedded
system development are the more demanding of the two environments,
and therefore receive the primary emphasis in these courses. The se
quence includes the following courses:

Operating Systems

In this course the student learns to apply the prinCiples of operating
systems to the deSign and evaluation of specific operating systems.
The students apply quantitative measures of performance to evaluate
and compare systems of software and hardware. The course includes a
project which involves the design and development of a simple operat
ing system.

computer Systems Architecture

The objective of this course is for the student to be able to apply the
principles of computer system architectur~ in the areas of processor
control, memory system, and I/O system design. The emphasis is on
the relationship between digital system components, performance ob
jectives, and specific applications.

Software Engineering

The objective of this course is for the students to be able to apply
software engineering methodologies and tools related to the require
ments definition, structured deSign, coding, test and maintenance
phases of software development. A course project involves group
development of the requirements and specification of a large-scale
software system. This project is carried forward in the "Software Sys
tems Laboratory" course.

www.manaraa.com

Seward, et al 93

Minicomputer/Microprocessor Laboratory

In this course the students learn to apply the concepts and techniques
of digital logic design and assembly language programming to the

design, implementation, and evaluation of the performance of hardware
and software modules for computer system interfacing. This course em
phasizes chip level and assembly level design and development.

Software Systems Laboratory

The objective of this laboratory is for the students to apply the principles
and techniques of software engineering and operating systems con
cepts through a group development of a large scale software project.
The project in this laboratory course is begun in the software engineer
ing course, and completed here. The students develop the software
systems to support a local computer network protocol. The project is
completed using the programming language "C". Portions of the project
require the students to integrate assembly level modules with the higher
order language routines.

Software Systems Acquisition

The objectives of this course are for the students to apply the concepts
and techniques of software engineering to software acquisition; and un
derstand and be able to apply the techniques employed in planning,
developing, procuring, and maintaining software systems in the Air
Force. This course stresses the integration of concepts and techniques
of the software life cycle with those of project management and procure
ment within the Department of Defense environment.

The intent of the graduate programs at AFIT is for the students to
progress as much as possible in their education while at the Institute. In
those cases where the student has had an exceptional undergraduate
program or has completed some graduate work prior to coming to AFIT,
there are more advanced courses available for each of the core se
quence courses. These students are required to enroll in the more ad
vanced courses and to take additional elective courses.

www.manaraa.com

94 Considerations for Graduate SE Education

Specialization Sequence

In addition to the core sequence, students are required to take at least
one sequence which develops in depth a specific area of computer en

gineering. The specialization sequence for software engineering in
cludes required courses which delve into specific aspects of software
system development and recommended elective courses which provide
breadth of knowledge in specific application and support areas. The

courses in the sequence are as follows:

Advanced Software Engineering

The objective of this course is for the students to apply the concepts and

techniques of software reliability, software system security, and software
test and evaluation to software system design and evaluation.

Automated design tools are used where applicable.

Advanced Software Environments

This course explores current knowledge of software development en

vironments. Students apply software engineering principles to the
development and evaluation of development support tools. A large
scale Ada-based group project is used to demonstrate course concepts.

The student is required to complete the sequence by taking at least one

course from one of the other specialization sequences within computer
engineering and computer science. These specialization sequences in

clude the following:

• Artificial Intelligence

• Computer Graphics

• Computer Communications Networks

• Computer Performance Evaluation

• Compiler and Formal Language Theory

• Database Systems

• Computational Analysis

Each of these sequences include three or more courses that pursue in

depth a specific topic area. Hands-on experience is a critical part of any
engineering program. Each of the courses in the above sequences in

clude projects to reinforce concepts presented in the classroom.

www.manaraa.com

Seward, et al 95

The Mathematics Requirement

A firm theoretical foundation is essential for examining such issues as
algorithm complexity, design and analysis of complex simulation
models, and hardware and software system performance. Hence, each
graduate of the program is expected to have had at least an under
graduate mathematics course in each of the following subjects:

• Discrete Mathematics
• Finite Automata and Formal Language Theory

• Probability Theory

• Statistics.

If the student has not had courses in each of the above, then he is
required to make up the deficiency as appropriate. In any case, at least
two graduate mathematics courses must be selected either from those
above, or from other approved courses. The appropriate courses are
determined based on the student's background and planned course of
study.

Elective Courses

The students complete their course requirements by selecting elective
courses from a wide range of available support sequences. These
courses cover a range of topics from computer engineering and com
puter science, and include, in addition to elective sequences listed
above, VLSI system design, computer architecture, and numerical
analysis.

Independent Study

Perhaps the most important element in the AFIT program is an inde
pendent study by the student on a pro,blem of importance to the Air
Force or other DoD agency. There are twelve quarter hours of credit
allotted for the student to solve a software system design problem from
the requirements analysis phase through the system integration and test
phases. The results of this work are documented in a thesis. The
thesis research provides the ultimate project, in which students apply
the tools and techniques presented in the classroom to analyze and
design a practical system.

www.manaraa.com

96 Considerations for Graduate SE Education

Observations and Future Trends

As stated previously, the curriculum is evolving. It must evolve not only
because of resource limitations which prevent full scale implementation
at this time, but also because of ongoing developments in computing
technology. To adequately present the discipline of software engineer
ing, there must be available to the student computer-based tools to sup
port the software system design process. Without these tools increased
software productivity will be stymied by the "sweat shop" environment of
yesteryear. Likewise, advancements in software engineering education
depend upon readily available support tools in the educational institu
tions and integration of those tools into the curriculum. Software
development environments must be available to the student to provide
education in things desired and not with mundane tasks. Laboratory
courses and large scale programming projects are essential to software
engineering education. The projects must be large enough to be realis
tic, but must be assigned in increments to be achievable within a quarter
or semester. Automated support tools are necessary to accomplish
these requirements. Our experience at AFIT indicates that realistic
projects require more time than is available in a quarter or semester.
Although it is more difficult to coordinate than a single long-term project,
two closely coupled project phases can accomplish the same objectives.

Artificial Intelligence and distributed computing are two rapidly evolving
areas of computer technology. As software engineering methodologies
evolve to support AI programming, or as knowledge-based software
development methodologies are developed, the curriculum must be up
dated to incorporate these technologies. AFIT is already active in the AI
area both in research and with a sequence of courses available in the
area. Software development methodologies for distributed processing
systems present a challenge. Few such methodologies exist. AFIT
courses address the development and application of distributed sys
tems, but include little discussion of software development in such en
vironments. As distributed architecture systems become available, AFIT
is incorporating distributed software system development concepts into
the curriculum.

www.manaraa.com

Seward, et al 97

Conclusion
AFIT has included formal courses in software engineering in the cur
riculum since 1975. The number of courses and the course content has
evolved based upon the requirements of the Air Force for software en
gineers, the availability of tools and techniques to support software
development, and AFIT experience with differing approaches to present
ing the concepts and techniques of software system development. The
curriculum will continue to change as new technologies modify the en
vironment and objectives of the software engineer, both in terms of sup
port tools and changes in applications.

www.manaraa.com

Why Is Software Engineering So Difficult?

William E. Richardson
United States Air Force Academy

Abstract. The development of computer software has taken on sig
nificant proportions in relation to other aspects of system develop
ment. As a result, overall system development efforts have become
more difficult rather than easier in recent years. This weak link effect
has done little to enhance the overall image of the field often called
"software engineering."

The inability to accurately define software engineering undoubtedly
presages some of the difficulties of the discipline (if I can go so far as
to call it a discipline). Most attempts at definition involve a set of
general properties at one of three levels: the software development
level (the micro view), the software lifecycle level (the macro view), or
the system development level (the system view).

If we assume one of these definitions then we should be able to
isolate and categorize the problems with software engineering from
this perspective. It appears to me that there are four major categories
of difficulties to address if we are to truly make software engineering a
discipline of its own. These categories are:

• the eclectic software engineer

• the lack of a physical product

• the complex problem set

• the lack of good tools

This paper discusses these areas in some detail, not with an eye
toward defining the solution set, rather with an eye toward a more
rational definition of the problem.

Introduction

The development of computer software has taken on significant propor
tions in relation to other aspects of system development. As a result,
overall system development efforts have become more difficult rather
than easier in recent years. We often hear the cries of "software crisis"
whenever a system is late, over budget, or does not meet the user's
requirements. This weak link effect has done little to enhance the over
all image of the field often called "software engineering."

www.manaraa.com

Richardson 99

The purpose of this position paper is to present three different views of
what constitutes software engineering and a brief discussion of why
software engineering is so difficult to accomplish correctly. It is unlikely
the problems of software engineering presented here will be new to any
readers but I hope to present these problems in such a manner as to
make them more comprehensible and coherent. To do this, I have

categorized the problems into four abstract capsules: the eclectic na
ture of software engineering, the lack of a physical product, the complex
problem set, and the lack of good tools. Each of these abstract issues
must be conquered individually if software engineering is ever to be
come a mature discipline in its own right.

What Is Software Engineering?

The inability to accurately define software engineering undoubtedly
presages some of the difficulties of the discipline (if I can go so far as to
call it a discipline). Most attempts at definition involve a set of general
properties at one of three levels: the software development level (the
micro view), the software life cycle level (the macro view), or the system
development level (the system view).

The micro view was the earliest approach to a software development
strategy and embodied the ideas of many pioneers in the field of pro
gramming. The basis of this strategy is that programming is a new and
difficult art/science combination that requires new tools and philosophies
in order to handle the logical complexity. Theories such as top down
decomposition, modularity, and the definition of the three required unit
control structures helped to bring some order to the new task of im
plementing software. The focus in these early theories was very
definitely on the software implementation process, although the result of
many of these approaches was also to affect the broader issues of
software maintenance and modifiability. It is common to hear these
theories lumped together and called "structured programming." This
micro view is still a very important field of study today but the emphasis
has changed from the theory and techniques of programming to the
tools of program development, especially program development en
vironments. There are still a few who cling to the view that software

www.manaraa.com

100 Why Is Software Engineering So Difficult?

implementation (programming) is at the heart of software development

and hence is the essence of software engineering.

With the recognition of the "software crisis," the idea that program

development was but a small part of the overall software process be

came a common axiom. As a result, the macro view or software

lifecycle approach to software engineering became popular. This ap

proach states that the software engineer should be responsible for the

software product throughout its life: from problem definition to software

system phase out. The macro view recognizes that the problems intro

duced in the programming phase of the software development are minor

in comparison to the problems introduced in problem definition and re

quirements specification. Indeed, it is a common theory that the post
implementation cost of software is outrageously high as a result of the

pre-implementation ineffectiveness. That is, the macro definition of

software places its emphasis on reducing the overall cost of software
development and maintenance by reducing errors of problem definition

and solution design as well as correct programming. Hence, the macro

view of software engineering is a superset of the micro view. Success

in defining the software lifecycle process has been very slow in coming.

Indeed, like in the micro view, attention is being turned toward the
development of tools and lifecycle environments. Unlike the micro ap

proach, the theory and practice has not as yet formed a firm foundation

upon which to build these tools.

The final view is the most general and most recent of the possible levels

of definition of software engineering. Fro.m this point of view, software is

considered to be only one aspect of a larger body of effort called a

system. The system approach accepts the premises that support both

the micro and macro pOints of view, but it goes the step further to re

quire that total system lifecycle cost is what is really important. Hence,

from a system perspective the software must have its own integrity and

must also help build the integrity of the total system. This perspective

has been greatly advanced by the U.S. Department of Defense as a

result of its less than spectacular success with embedded weapon sys

tem software. In systems applications the cost of failure is usually even

more significant than in the more classical software applications. The

www.manaraa.com

Richardson 101

other interesting aspect driving many people toward this level of
software engineering definition is the rapidly decreasing cost of com
puter hardware. With hardware costs steadily declining we see that it is
becoming more cost effective to include some "intelligence" in new sys
tems. Hence the demand for system application software is the most
rapidly increasing segment of software development. To a large degree
we have not even begun to develop the theories, much less the tools,
with which to conquer the system level software requirements.

In this explication of the possible div~rgent levels of definition of
software engineering, I have obviously over simplified in two significant
areas. First, I have ignored the theories 6f software engineering that fall
between the three given, and there are many theories of this sort. For
example, there are theories of software engineering that gladly embrace
the design, implementation, and testing phases of the Iifecycle but con

sider the early Iifecycle phases of problem definition and requirements
specification to be too esoteric for real software engineering.

The second oversimplification is that I have carefully chosen not to
specify what actual properties should be included at each level of defini
tion. For example, should the macro level software engineering defini
tion allow classical analysis techniques or does software engineering by
its very nature exclude certain of the fuzzier approaches? The actual
tenets of software engineering that comprise each level of possible
definition is set aside for a different discussion.

This attempt to quantify, even partially, the discipline of software en
gineering is necessary to create the context for the body of our discus
sion about the difficulty inherent in software engineering. For this dis
cussion, I will assume the broadest definition possible, that is the sys
tem view including all reasonable underlying tenets.

Why Is It So Difficult?

This question is undoubtedly so multifaceted that it will never be com
pletely answered. However, there is certainly significant benefit in at
tempting to characterize the problems inherent in software engineering
so at least an abstract answer to the question can be given. With this

www.manaraa.com

102 Why Is Software Engineering So Difficult?

abstract answer in hand, perhaps it will then be easier to identify the
areas of education and research needing to be refortified or rethought in
order to produce better software engineers.

In attempting to determine such an abstract framework for the various
problems of software engineering, I found the follqwing four themes kept
recurring. By no means are these themes mutually exclusive but they
do provide a convenient foundation from which to discuss the software
engineering dilemma.

The Eclectic Software Engineer

Consider for a moment the task of the software engineer using the sys
tem definition of software engineering. Without a doubt, this individual
must be a master of many different disciplines. One of his /her primary
tasks is to interface with the user to determine the exact requirements of
the system. From this perspective the software engineer must be profi
cient with classical analysis techniques, able to abstract, and articulate.
Additionally, he/she must become an expert in the area of application,
understand the interfaces to the remainder of the system, and com
prehend the organizational environment in which the system operates.
He/she will be required to understand enough psychology to ferret out
unstated requirements and develop insight into unmentioned problems
and organizational idiosyncrasies. Finally, the software engineer has

the very difficult task of conveying to the user and to management tech
nical information and difficult concepts. To a very large degree, the
entire effectiveness of the project depends upon his ability in these very
"fuzzy" areas of interpersonal communication, psychology, and the
ability to abstract and synthesize.

Another area where the software engineer must have expertise is in the
area of design. Design requires a combination of two talents: creativity
and the ability to reuse previous design parts, sometimes called
cumulativity. Again, abstraction and synthesis play an important part in
the design process. As in any design endeavor, the insight of the ar
tisan can make or break the product. Unfortunately, the design process
in software development is unlike many other forms of design in that two
of the overriding criteria of the design must be the ability change the

www.manaraa.com

Richardson 103

product based on the effect of ever changing requirements and the
ability to maintain (read correct or evolve) the software product through
out its lifetime. This concept of design to a moving target seems self
defeating but is necessary when the user is a tyro in the area of automa
tion and the software engineer is a novice in the area of system applica
tion.

Of course, the technical management of a software engineering project
is a whole other area of expertise that is too often overlooked and un
derstressed. Further discussion of this point will be put off until the next
section, but it is important to note that classical as well as specialized
management skills are required to control a software project. Addition
ally, the sheer size and complexity of software systems, the lack of ex
perience on software projects, and the requirement for interfaces to
other system components often increase the management difficulty by
orders of magnitude over more conventional development efforts.

Finally, we come to another difficult area of expertise for a software
engineer: the technical tools and technical ability. This is also the area
of greatest divergence of opinion as to what is appropriate for the prac
titioner to know and use. Some methodologies require a significant
mathematical training and understanding. Others see mathematics as a
dead end which obscures the correct technical path. Until the technical
discord is finally resolved the software engineer will have the same dif
ficulties encountered in any discipline where technical standards are
flimsy or nonexistent.

Where Is the Product?

The second significant problem area is the logical nature of the product
of software engineering. This to my mind is the major difference be
tween software "engineering" and "real" engineering. Because of this
logical nature there are few physical laws which can be used to model,
describe, or predict the behavior of software. Obviously, some math
ematical and logical "laws" are relevant to software, but these have not
yet been demonstrated to fill the role that physical laws do in other

forms of development. It is because of the lack of physical laws that the
software aspect of computer science is sometimes called an artificial

www.manaraa.com

104 Why Is Software Engineering So Difficult?

science (like political science, or social science) rather than a natural
science (like physics or chemistry). Another negative effect of software
being a logical rather than a physical product is the lack of visibility of
the product to the user and to management during the lifecycle, espe
cially during design and development phases. It is exceedingly difficult
to control and manage that which we cannot see. It is also difficult to
quantify the status of such a project - we have all seen the 90 percent
complete syndrome gives managers fits when trying to budget
resources for a project. Perhaps even more distressing, based on our
previous discussion about the effect of the user presenting a moving
target for the requirements, is that the product is typically not visible to
the user until late in the development process. This means that
changes in the requirements are either determined very late or are
never determined at all - either of which results in significant cost infla
tion. Of course, rapid prototyping and other techniques help to mollify
this problem somewhat, but the fact that scaling is generally not pos
sible on logical products means that it is difficult to keep the user in the
development loop to the necessary degree early in the lifecycle.

Complexity of the Problem Set

One of the problems in software engineering where we continue to lose
the battle is in the area of complexity. Over the last twenty years, the
technology for developing hardware and the capability of the hardware
being developed has increased at a very high annual rate. Meanwhile
the cost/capability ratio of the hardware has shrunk significantly.
Through this period the capability to produce and deliver software has
risen only slightly. The net result is more applications are becoming
economical for automation and even the more complex, science fiction
like applications are being attempted. Consequently the hardware is
driving the already stretched software industry further into a deficit posi
tion.

The more complex and larger scale projects also have another inter
esting side effect: the longer the lifecycle of the typical project the more
it depletes the reservoir of software engineering experience and the
more difficult it becomes to create and test theories and methodologies

www.manaraa.com

Richardson 105

of software development. If systems are eight years in development,
how long will it be before enough evidence is gathered to validate the
techniques used to develop the system's software and, at the rate the
software development theory is changing, how useful will the techniques
be once they have finally been validated? Again, the problem cries out
for the ability to simulate or scale the process. Certainly the drain on
our experience is a significant problem because we are already in a
personnel crisis of substantial proportion.

Absolutely the most crushing damage the increasing demand and in
creasing complexity inflicts on software development is because we
have never found how to reuse much, if any, of what we develop. Each
project takes on a uniqueness that causes us to reinvent the same
wheels over and over again. In very few cases has reuse of significant
pieces of software been successful and in very few cases has reuse of
designs been attempted.

No Tools Is Not Good News

The final category of software engineering problems center around the
fact that we have an absence of good tools or even methodologies in
which to use good tools. As mentioned in the introduction of levels of
software engineering, the tools for structured programming are now
coming to maturity, but the tools for the other two levels are still years
from maturity. The difficulty in developing methodologies and tools is
the result of the three previous problems. For example, a methodology
must attempt to be universal in both its coverage of the lifecycle and
applications. It must include structuring, formal, and management com
ponents; it must require few or no transitions of tools, symbology, and
techniques; and it must, thereby, ease the burden on the software en
gineer. It certainly must be coherent and provide visibility of the
product. Finally the methodology must supply sufficient infrastructure
and support to ease the complexity of the development process. With
out a good methodology and compatible tools, the previous three
categories of problems seem insurmountable.

The tool development has recently gone into high gear, but we must be
careful that we do not outsmart ourselves by making very good tools

www.manaraa.com

106 Why Is Software Engineering So Difficult?

which do not fit into any coherent methodology. The development of
tools is probably the one problem in which there is some room for
speeding up the maturation process; however, it will certainly be at a
substantial cost. And if we proceed along too many tangents that are
unproductive and hence only deplete our resources for developing use
ful tools, we will likely find that trying to rush out of our adolescence has
only set us further back.

Conclusion

As promised, this paper did not introduce any particularly new ideas but
simply attempted to organize a number of thoughts about our current
state of software engineering. It appears when all is said, the overriding
problem is the discipline is still very immature. As a result, we do not
have the background or experience base from which to draw to help
solve our problems. The immaturity also brings with it the inability to
specialize, which may be the only natural solution to the complexity and
eclectic software engineer problems. Therefore, we must continue to be
flexible and to support partial solutions while we continue to search for
the ultimate paradigm.

www.manaraa.com

Technology Selection Education
for Software Engineers

Rocky Mountain Institute of Software Engineering

William E. Riddle
Software Design & Analysis, Inc.

Lloyd G. Williams
University of Colorado

Abstract. Creating and improving an adequate software engineering
work force requires several different types of continuing education for
software professionals. Task-oriented education is needed to make
already well-educated managerial and technical personnel effective
for specific jobs, projects and organizations. Improvement-oriented
education is needed to upgrade experienced personnel with a working
knowledge of new software engineering technology. Selection
oriented education is needed to provide an exposure to new tech
niques and concepts sufficient to impart an appreciation of the
technology's costlbenefit and allow well-founded decisions about
whether or not to adopt it. We discuss the need for selection-oriented
education, the characteristics of a successful selection-oriented
education program, the requirements it levies against other education
programs, and the attempt being made at the Rocky Mountain In
stitute of Software Engineering to provide such a program.

Introduction

Creation and improvement of an adequate software engineering work
force requires significant educational effort on several fronts. Pre
employment, academic education must provide for the continual infusion
of the requisite numbers of new personnel. Post-employment, continu
ing education must provide for "modernization" of the work force and
job-specific training. 80th forms of education are extremely important

but continuing education is critical because software engineering tech
nology is changing so rapidly.

Continuing education may take the form of "refresher" courses, short
courses on specific topics, or on-the-job training with new methods,
tools or techniques. A specific continuing education activity will serve
one or more of the following intents:

www.manaraa.com

108 Technology Selection Education for Software Engineers

• Task-oriented education assists in developing specific
skills. This type of education is needed to make already
well"educated managerial and technical personnel effective
for specific jobs, projects, and organizations. It moves
these personnel closer to the state of practice.

• Improvement-oriented education assists in upgrading a
professional's capabilities in general. This type of educa
tion provides experienced personnel with a working
knowledge of software engineering technology that is new
to them. It contributes to moving these personnel closer to
the state of the art by improving their general capabilities.

• Selection-oriented education provides an exposure to new
techniques and concepts at a level sufficient to impart an
appreciation of the technology's applicability and cost-to
benefit ratio. This type of education is needed to enable
management and technical personnel to make well-founded
decisions about whether or not to adopt a particular tech
nology. This also contributes to moving the personnel
closer to the state of the art but addresses the preliminary
step of deciding in which direction to move.

In this paper, we focus on the critical, but often neglected, category of
selection-oriented education. We begin with a discussion of the need
for continuing software engineering education in general and selection
oriented education in particular. Then we discuss the technology selec
tion task itself, indicating what it involves, how it contributes to improving
the state of practice, and why it is key to technology improvement in
general. This is followed by discussions of some criteria for selection

oriented education programs and the relationship of selection-oriented
education to other types of education. We then provide an example,
describing the selection-oriented education activities at the Rocky
Mountain Institute of Software Engineering rMlse. We conclude with a
brief summary, in which we also relate some problems encountered in
establishing the rMise selection-oriented education activities.

The Need

Continuing education is an important aspect of training for software en
gineers and will continue to be for the foreseeable future. The need for
continuing education is based on several factors, chief among them the
lack of directly relevant experience in academic computer science

www.manaraa.com

Riddle and Williams 109

programs and the rapid change in software engineering technology.
This latter factor, in particular, leads to a need for selection-oriented
education.

Academic Training for Software Engineers

Managers of software projects have complained for some time that
graduates of computer science programs do not enter the working world
with skills that are relevant to "real world" software projects. Entry level
software engineers invariably must serve an apprenticeship while they
acquire necessary skills that were not included in their education.
Relevant skills include requirements analysis, design, team work, and
software maintenance.

Some of these skills are beginning to be included in undergraduate
computer science courses, and it is likely this trend will continue. Spe
cialized graduate programs, which grant master's degrees in software
engineering, have been developed [29], and many computer science
departments are developing more than token strength in the area. As
we gain more experience in treating software engineering as part of an
academic program, we are increasingly able to include this subject mat
ter in undergraduate courses [61]. As a result, students may, through
required courses and judicious choice of electives, receive better train
ing for typical work situations.

New Technologies

The mismatch between academic experience and on-the-job require
ments is not unique to software engineering; many other disciplines
(e.g., chemistry, journalism) have also noted the ,problem. What is
unique to the software engineering arena is the rapid rate of change to
both its conceptual base and fundamental technology, and hence to the
discipline itself.

Research over the past five years has produced numerous advances in
software tools, automated environments, and software methodologies.
During this time our model of the software process itself has undergone
major revision. The rapidly changing nature of the technology which

www.manaraa.com

110 Technology Selection Education for Software Engineers

supports software engineering has produced a significant gap between
the state of the art and the state of practice. This gap is a consequence
of the long delay apparently required between the conception of new
software engineering technology and its introduction into practice [82].

The Need for Selection-oriented Education

We seem caught in a never ending spiral. There is a mismatch between
what is learned in pre-employment education and the skills and
knowledge needed for many work situations. And the technology is
expanding and improving at a pace that makes it difficult to keep
courses in tune with both the state of the art and the state of practice.

Part of the solution lies with the introduction of software engineering
material. This material tends to be closer to real world situations, and
these courses can include group exercises that more closely "simulate"
real world projects and work situations. They also provide real world
related knowledge structures (e.g., life cycle models) that can be effec
tively used to relate the state of the art and the state of practice.

The cure does not, however, lie solely in revamping the computer
science curriculum. While there is certainly room for the inclusion of
more software engineering in the curriculum, a student's experience can
never be completely realistic because of the confines of an academic
environment and calendar. And, in fact, experience in general supports
the time-honored view that the proper goal for academic education is
the acquisition of general knowledge and skills as well as an under
standing for and appreciation of the process of learning. The prepara
tion for a "lifetime of learning" that comes from general education is
especially important for software engineers who will need to cope with
rapidly changing technology, and possibly many different application
areas, during their careers.

Given the limitations of an academic environment and calendar, it is
unrealistic to expect academic computer science programs to service all
the educational needs of software engineers. Continuing education
programs are needed to "correct" for the inevitable mismatch between
the skills and knowledge developed through an academic education

www.manaraa.com

Riddle and Williams 111

program and those needed for specific work situations. In fact, it is the
specific aim of task-oriented education to provide this "correction."

The other forms of continuing education meet the need to decrease, or
at least keep constant, the gap between the state of the art and the
state of practice. Selection-oriented education helps to speed the
movement of technology into practice by assisting the selection of new
technology applicable and beneficial to particular work situations.
Improvement-oriented education helps to close the gap by providing the
follow-on education needed to make effective use of new technology.
Continuing education, therefore, plays a significant role in transferring
new technology into practice in a timely fashion. And selection-oriented
education is the key in that it supports the critical first step of deciding
what technology should become part of the state of practice within
specific target communities.

Technology Improvement

Selection Selection Charncteristics
• Identification of Alternatives
• Evaluation of Alternatives
• Choice Among Alternntives

Acquisition • Buy vs Build Derterminntion
• Contracting
• Acquisition by iVianagelllent

Integration • Adaptation
• Installation
• Release Management
• Assistance Developlllent

Propagation • Promotion and Marketing

Figure 1. The Role of Technology Identification

Technology Selection

The process of narrowing the gap between the state of practice and the
state of the art is pictured in Figure 1. Once new technology has been
conceived through research and been sufficiently developed to become

www.manaraa.com

112 Technology Selection Education for Software Engineers

state of the art, it is the aim of technology transfer to make that tech
nology part of the state of practice within some community. If the tech
nology has limited applicability, the target community will be narrow and
the transfer activity will be specific to the technology being transferred.
When the technology is of general utility, however, the target community
and transfer activity will be correspondingly broad and general.

Software technology comprises the technical and managerial methods,
techniques and (automated and manual) tools for the software process,
that is, the process of creating and evolving software systems. At

present, the state of the art and state of practice in software technology
are both immature relative to what has been achieved in other dis
ciplines (for example, electrical and civil engineering). Lacking fun
damental knowledge and insight about software "building blocks" and
the processes for using them, the software process remains a craft in
which most systems, even when they are variants of existing systems,
are built from scratch using ad hoc procedures. New software tech
nology, therefore, tends to be general rather than specific to particular
situations. Because of this generality, new software technology tends to
have potentially broad applicability.

As a result, there are a wide variety of software technology transfer
situations. The target community can be a specific project, a division
within some organization, an entire organization itself, or a entire sector
of the community at large. On the one hand, the transfer can concern a
particular method, technique or tool that fills a specific gap; on the other
hand, it can concern a collection of methods, techniques, and/or tools
that meet a more general need. The transfer can take place prior to
using the technology, or transfer and use can be integrated, with actual
use helping to guide the transfer process.

A general software technology transfer paradigm, which can be adapted
to meet the needs of specific situations, is also pictured in Figure 1. The
paradigm comprises four activities: selection of technology satisfying
some criteria, acquisition of suitable versions of the technology,
integration of the technology with existing technology, and propagation

of the result throughout the target community. These activities will typi-

www.manaraa.com

Riddle and Williams 113

cally occur sequentially, but it would not be unusual for them to take

place in parallel.

Technology selection is the process of determining which methods,
techniques and tools satisfy criteria reflecting the target community's re
quirements. Selection requires several capabilities: the ability to
identify a set of candidates to be considered; the ability to
(comparatively or "absolutely") evaluate the candidates; and the ability
to choose among the candidates, based on the evaluations and with
respect to the driving criteria. More often than not, a single pass
through these steps will not produce a final choice. One pass may,
therefore, serve to support the identification step in a subsequent pass.

Selection characteristics that discriminate among alternative methods,
techniques and tools, are critically necessary for technology selection.
In support of identification, they must (at least) provide a rough
categorfzationoQf alternatives. In support of evaluation, they must
provide a set of dimensions along which evaluation may be performed.
In support of choosing among alternatives, they must support interpret
ing the evaluation results in terms of the criteria driving the selection. In
addition, they should generally support understanding the benefit to be
derived from adopting the technology versus the cost, effort and "pain"
of acquiring it and putting it into service.

Technology acquisition also requires several capabilities. The selected
methods, techniques or tools may be commercially available, but it may
be more cost effective to develop new versions rather than purchase
existing ones. For example, the need to make extensive modifications
to commercially available versions will usually swing the balance in
favor of building a new version. Technology acquisition, therefore, re
quires the capability to make build-versus-buy decisions. Technology
acquisition will also require a contracting capability. If the technology is
purchased, this capability must support many activities, including the
negotiation of royalty and service arrangements. When it is decided to
develop a new version, the contracting capability may additionally have
to support working out a development contract. Finally, technology ac
quisition requires an overall management capability to guide the process

www.manaraa.com

114 Technology Selection Education for Software Engineers

to successful completion with the eventual delivery of the selected tech
nology.

Technology integration is the activity of consolidating new and existing
technology. Several methods, techniques and/or tools may be jointly
selected, and integration may also involve the consolidation of these
pieces of new technology with each other. In part, integration involves
tuning, customizing, extending, or otherwise adapting the pieces of tech

nology so they can successfully be used in tandem and so they appear
consistent to the users. It also involves installing, on the hardware used
by the target community, any software embodying the technology.
Adaptation and installation will typically be done in several steps over a
period of time; therefore, some process for the management of succes
sive releases will usually be required. Finally, materials that aid learning
and usage will have to be developed, including: documentation and
other assistance materials; on-line, automated "help" facilities; and in
structors and consultants who can provide off-line assistance.

Technology propagation involves active promotion and "marketing" with
the intent of achieving the technology's widespread use throughout the
target community. This includes activities such as demonstrating ap
plicability, demonstrating value, providing introductory tutorials, and
responding to trouble reports and requests for modification. The
propagation activity is, in essence, a miniature (recursive) version of the
overall transfer process in which individuals in the target community
decide to select the technology, acquire it, and integrate it into their daily
routine.

Technology selection is constrained by the activities preceding and fol
lowing it. Technology obviously cannot be selected until it is researched
and developed. These prior activities will provide much of the
knowledge and experience needed to identify, evaluate and choose
technology before it has been extensively used. In addition, the charac
teristics used in selection must reflect the ease or difficulty of sub
sequently acquiring, integrating and propagating the technology.

www.manaraa.com

Riddle and Williams 115

Technology selection is, however, the key to technology improvement
and transfer. The process of selection can be instrumental in improving
the general state of affairs through the identification of gaps to be filled
through research and development. It can also aid in identifying the
need for new acquisition, integration and propagation techniques, and
perhaps even suggest the general nature or operational details of these
techniques. Thus, in addition to being a critical first step in improving
the state of practice, technology selection is also critical to guiding im
provement to the state of the art and the transfer process in general.

Criteria for Selection-oriented Education Programs

Technology selection requires a broad knowledge about software tech
nology in general, an understanding of the general state of practice, and
a familiarity with technology on the state of the art horizon. It also re
quires a number of basic skills, among them: design of experiments,
instrumentation, data interpretation, and survey design. Finally, it re
quires insight, intuition and experience so that definitive decisions can
be reached when interpreting what will undoubtedly be inconclusive, if
not inconsistent, evaluation data.

Education alone cannot prepare personnel for the task of technology
selection. It is unrealistic to assume that any person or team can be
broadly enough educated to successfully handle even a small proportion
of the situations that will arise. A major determiner of success will,
therefore, be the ability to freely formulate teams having the requisite
knowledge and skills for each specific situation. In addition, the levels of
insight, intuition and experience required for even the simplest of situa
tions cannot be imparted through education. Another major determiner

of success will, therefore, be the extent to which the teams can be popu
lated with personnel experienced in both the technology under con
sideration and the selection process itself.

However, education can obviously contribute. Formal education and
improvement-oriented education can provide the requisite skills, and
task-oriented education can impart the requisite understanding of the
requirements and constraints of specific target communities. It is the
specified intent of selection-oriented education to complement these

www.manaraa.com

116 Technology Selection Education for Software Engineers

other contributions. The role of selection-oriented education is dis
cussed in this section in terms of both general and specific criteria that
must be met by an selection-oriented education program. The role of
the other forms of education and their relationship to selection-oriented
education are discussed in the next section.

General Criteria

Selection-oriented education must provide the ability to identify,
evaluate and choose among alternative methods, techniques and tools.
In addition, it must impart an understanding of the other activities in
technology transfer - acquisition, integration and propagation - so
that the concerns imposed by these activities can be adequately accom
modated.

Selection-oriented education is intended to augment and be augmented
by other forms of education. It need not, therefore, be "complete." It
can, instead, provide a partial understanding sufficient to help the stu
dent understand whether or not further, more in-depth,. education is
needed and in what areas. The major task is to provide sufficient insight
into a piece of state of the art technology to allow it to be evaluated in
comparison to other state of the art and state of practice technology.
Other tasks include introducing general paradigms for technology selec
tion; making the student.aware of a variety of identification, evaluation
and choice techniques; and relating the general community's ex
periences in performing technology selection.

Because it is a form of continuing education, selection-oriented educa
tion must meet several contextual constraints. The education must be
packaged to fit the time constraints and flexibility requirements of the
target student audience. It must be modularly packaged so that cus
tomized sequences can be used to meet individual needs. Finally, it
must capitalize on the student's former education and (generally
extensive) experience.

www.manaraa.com

Riddle and Williams 117

Specific Criteria

Within the confines of these general criteria, a selection-oriented educa
tion program must meet several specific criteria. These pertain to the
content of the program, its general form, the pedagogical tools that are
used, and the instructors.

Content

Exposure to State of the Art Technology. A primary intent is to im
part an understanding of the state of the art sufficient to provide a start
ing point for technology selection. Students should understand what lies
on the technology horizon. They should also understand any concepts
fundamental to assessing this technology with respect to their work
situations. And they should appreciate the prospects and timeframes
for developing usable, transferable versions of the technology.

Technology Transfer Coverage. As indicated previously, successful
technology selection requires consideration of the feasibility and ease of
subsequent acquisition, integration and propagation. The education
program should provide the opportunity to understand what techniques
are available for these subsequent activities and how they interact with
the task of technology selection.

Technology for Identification, Evaluation and Choice. The program
must introduce students to a variety of techniques for identifying,
evaluating and choosing among instances of software technology. It
must help them understand the similarities and differences among alter
native identification, evaluation and choice techniques. The students
should understand these techniques in the context of general ap
proaches to technology selection in particular and technology transfer in
general.

Experience-based Content. The content of the program should reflect
actual experience as much as possible. This should include experience
with using various technology selection paradigms and specific iden
tification, evaluation and choice techniques. It should also include ex
perience with using technology that the students might actually be con
sidering for adoption. The experience data should reflect a reasonable

www.manaraa.com

118 Technology Selection Education for Software Engineers

and extensive set of selection-support characteristics and be useful in
demonstrating how identification, evaluation and choice may be con
ducted.

Decision-making Orientation. It can be expected that the majority of
students will be decision makers within their organizations. They will be
responsible for making technology transition decisions, developing a
plan for making these decisions, and managing the technology transfer
process in general. The program must meet their needs for general
information about possibilities as opposed to the details of specific
software technology instances or technology selection techniques. And
it must help them plan a decision-making process, decide how to
upgrade the skills of their support personnel, and guide the process to
successful completion.

However, not all students will be in the position of making decisions for
larger groups. Instead, they will be interested in making decisions
regarding the technology they themselves use. The education must
also service their decision-making needs, which, while similar to those
of the majority of students, will generally be more specific to particular
pieces of technology. In addition, the program should provide these
students (and also the majority to some extent) with the information
needed to convince their management to invest the required resources.

General Form of the Program

The program must be strongly experiential. We have already noted the
need to include information on actual technology transfer, selection and
usage experiences as much as possible. The program must, however,
go beyond this and provide students with the opportunity to gain their
own experiences. Because of the necessity to base selection decisions,
in the foreseeable future at least, upon insight, intuition and experience,
imparting this experiential knowledge must be a cornerstone of the
educational program.

To this end, the program must include demonstrations and hands-on
exercises. These can be simple, "canned" ones intended to highlight
specific pOints. More extensive exercises - that run over several days,

www.manaraa.com

Riddle and Williams 119

involve team work, and have rather general goals - should also be
provided. There should be the opportunity for students to gain insight,
intuition and experience through "open laboratories" separate and inde
pendent from the structured courses.

In providing extensive demonstration and exercise capabilities, we en
counter two severe problems. One is the general inability to provide
demonstrations and exercises that reasonably reflect "real world" situa
tions. The other is the lack of support for scientific investigation of
software engineering issues.

Certainly, there is a large disparity between the experience acquired in a
typical educational exercise and that provided by "real world" software
engineering projects. Real world projects involve large, complex sys
tems developed by teams of programmers. These systems may take
years to develop and have useful lifetimes of ten to fifteen years. During
their lifetime, they may require a significant amount of maintenance.

Typical exercises, on the other hand, are chosen so they illustrate
specific principles and can be completed within a short period of time.
They are, therefore, small and of limited complexity, and the scalability
of their results is suspect. They are usually designed to be completed
by a single individual and generally do not have significant lifetimes. It
is extremely rare for educational exercises to include the evolution that
takes place during the maintenance phase of real world software
projects. Some of the important differences between educational
projects and major software development efforts are summarized in
Figure 2.

"Real-World"
Projects

Size >10,000 lines
Lifetime 10-15 years

many modules
Complexity teams
De vel 0 p men t developer #: user
D eve lop e r / Use r extensive
Maintenance

Educational
Projects

<500 lines
"until it works"
single module

individual
developer = user

throw-away

Figure 2. Differences Between "Real-world"
and Educational Projects

www.manaraa.com

120 Technology Selection Education for Software Engineers

In many other disciplines, the means have been developed for making
valid inferences concerning actual phenomena from small-scale experi
ments or exercises. We lack this capability in computer science in
general, and it impacts our ability to "simulate" real world situations in
educational exercises and demonstrations. We can certainly perform
exercises and demonstrations. But the methods used rarely scale to
meet the demands of large projects. The skills and conclusions ob
tained are hard to transfer to more complex situations.

Thus, in developing the experiential component of selection-oriented
education programs, we must carefully develop the demonstrations and
exercises, and prepare convincing, valid arguments of their implications
for the real world. Until we have developed the capability to perform
valid, scientific experiments, we must caution students to correctly inter
pret any exercises they may conduct on their own. In part, this involves
monitoring the use of any self-help laboratory we make available and
assisting the students in interpreting the results of experiments they per
form. It will also require the inclusion of courses in experimental tech
niques.

Pedagogical Tools

Interactive Sessions. Students will rarely come to selection-oriented
activities with well-formulated questions. And, in our experience, when
they do, the questions are frequently the wrong ones, (e.g., which
methodology is the best?). The educational program, therefore, must
encourage the students to voice their concerns and interests during
class time. These can then be refined interactively by the instructor and
the other students. Interactions with other students is particularly impor
tant, if only to find out "the situation" is a little different at other locations.

laboratory Components. As indicated before, all selection-oriented
courses should have some laboratory component. lack of facilities may
reduce this to merely the inclUSion, in the course materials, of transcripts
of previous demonstrations, exercises and experiments. The norm will
probably be to offer guided exercise time in conjunction with a course,
during which the students can receive individual help from the instructor.
In any event, the development and presentation of effective in-class

www.manaraa.com

Riddle and Williams 121

demonstrations will place severe demands on the facilities available at

even the best of organizations.

Instructors
Instructors obviously must be technically competent. They must also
have an intimate knowledge of both the state of the art and the state of
practice. The ideal instructor is a researcher, actively involved with ad
vancing the state of the art, who is instrumental in moving the tech
nology they have developed into practice within some representative
community.

They must also have demonstrated an above average competence as a
teacher. They must be familiar and comfortable with teaching for the
short, intense periods common in continuing education situations. They
must be able to synthesize and explain difficult concepts quickly and
articulately. They must be able to provide insight without having to give
detailed explanations.

The interactive nature of selection-oriented education imposes ad
ditional burdens. The instructors must be willing and able to seek out
the needs of the individual students. They must be receptive to ques
tions and other interruptions, and demonstrate superior interpersonal
skills in handling them. They must be highly flexible and able to rapidly
mold the material to the needs of the students.

Relationship to Other Types of Education

Selection-oriented education cannot take place in isolation. It must be
developed and administered in conjunction with the other categories of
continuing education described in the introduction. Selection-oriented
education also relies on a particular set of fundamental skills (e.g., data
reduction, data analysis). The teaching of these skills is most properly
part of pre-professional education. Thus, selection-oriented education is
also strongly dependent upon knowledge and abilities acquired during
formal, academic education. As will be seen, selection-oriented educa
tion can also have a significant impact on academic education.

www.manaraa.com

122 Technology Selection Education for Software Engineers

Task-Oriented Education

The goal of task-oriented education is to move well-educated personnel

closer to the state of practice for specific jobs, projects, and organiza

tions. For example, task-oriented education might be used to help a
technical individual accomplish the transition to a managerial role within

their company. Task-oriented education should typically precede

selection-oriented education.

While task-oriented education usually has a very specific focus, it can

be used to assist selection-oriented education. This is important be

cause those individuals making use of task-oriented education are often

charged with the responsibility of selecting new technologies to be used

in their particular tasks. During task-oriented education, professionals

can develop a recognition and appreciation of project and organization

criteria that are important in selecting new technologies. These criteria

could then be used to guide the identification, evaluation, and choice
stages of technology selection. Support for selection-oriented education

during task-oriented education requires little effort beyond sensitizing

professionals to the criteria that are important from the point of view of

the task in question.

Improvement Education

The goal of improvement education is to provide experienced prac

titioners with a working knowledge of current software engineering tech
nology. Improvement education typically involves in-depth, hands-on

experience with a particular tool or technique. This experience should
involve classroom-style learning to provide an overview and introduction
to the technology coupled with exercises that give students experience

in using the technology on meaningful example problems. This cate

gory of education, in many instances, logically follows selection-oriented

education. Once a particular technology has been selected for a project

or organization, the target community needs to be trained in its use.

It is not necessary, however, to view improvement education as com

pletely separate from selection-oriented education. They are, in fact,

complementary and may be considered to be co-requisites in some cir-

www.manaraa.com

Riddle and Williams 123

cumstances. Those actually involved in technology selection may need
to have in-depth, hands-on training with various technologies in order to
make an informed evaluation. One way to accomplish this is to provide
activities whereby evaluators can gain hands-on experience with new
methods, tools and techniques in situations which lend themselves to
comparison. These activities should include exercises or sets of ex
ercises designed to reveal the relative strengths and weaknesses of the
tools or techniques under consideration in a variety of contexts (e.g.,
both real time and data-processing applications). The exercises must
exhibit many of the characteristics for exercises supporting selection
oriented education. The exercises will need to be sufficiently detailed
and realistic to enable meaningful evaluation. They will also need to be
simple enough to allow completion within a reasonable time. Thus, ex
ercises developed for improvement-oriented education can be useful for
selection-oriented education. Conversely, those exercises developed to
support selection-oriented education can provide appropriate vehicles
for improvement education.

Academe

Selection-oriented education has two important ties to traditional
academic education. First, in order for selection-oriented education to
be effective, or even possible, there are fundamental, prerequisite skills.
These skills build on foundations that must be laid during formal educa
tion. Thus, selection-oriented education levies some requirements
against academic programs. Second, selection-oriented education also
impacts formal education by assisting in the selection of new material
for inclusion in the curriculum.

Requirements from Formal Education

Technology selection has as prerequisite skills the ability to compare
and evaluate competing technologies. These comparisons and evalua

tions need to occur along two dimensions. The initial selection of a new
technology will involve identification, evaluation, and choice. These ac
tivities are aimed at determining which technologies are appropriate for

a given project and/or organizational context and selecting those which
best meet a particular set of needs. Once a new technology has been
selected, its successful transfer into practice depends strongly on the

www.manaraa.com

124 Technology Selection Education for Software Engineers

benefits which the technology provides in relation to its costs. These
costs may be measured directly in financial terms (as in the cost as
sociated with construction or acquisition of a new software tool) or in
more indirect terms (such as the "pain" associated with a steep learning
curve for a tool or technique).

Measurement along both dimensions requires the ability to perform em
pirical investigation as well as the use of less formal comparison and
evaluation. Specific aspects of comparison and evaluation skills will be
context-dependent and thus the domain of post-employment continuing
education. The foundations for these skills must, however, be es
tablished as part of pre-employment formal education.

Provision of basic skills for technology choice and evaluation will require
some revisions in the computer science curriculum. Experimental skills
are typically not included in a computer science education. Indeed,
there is a need for considerable research in this area to determine what
types of experiments and experimental skills are appropriate for com
puter science. Also missing from the computer science curriculum are
fundamental empirical skills such as data reduction and data analysis.
While computer science is likely to have special needs that differ from
those of other disciplines, the basic concepts and techniques have been
well established and can be adapted from other disciplines such as
physics and psychology. The inclusion of these topics in the computer
science curriculum is also likely to hasten the development of ex
perimental methods in software engineering.

Impact on Formal Education

As noted in the introduction, software engineering principles and prac
tices are beginning to have an impact on both the graduate and under
graduate curriculum. This trend is likely to continue and accelerate. As
new software engineering tools and techniques are developed, many of
them will find their way into the curriculum.

The selection of those technologies that are to be included in the cur
riculum is an extremely important activity for educators. The particular
criteria used by educators will differ from those used by practitioners;

www.manaraa.com

Riddle and Williams 125

educators will be more interested in pedagogical issues such as illustra
tion of basic principles and exposure to a broad spectrum of topics.
While the criteria used by educators and practitioners may differ,
however, the selection process will be fundamentally the same. Thus,
the nature of technology-selection education for educators is not sig
nificantly different from that for practitioners.

The need for selection-oriented training for educators cannot be under
estimated. Traditionally, the best way for educators to stay current has
been to be active in research, be familiar with the current literature, and
attend professional conferences. These avenues are still of fundamen
tal importance, and support for research clearly needs to be expanded.
Where selection of technology for inclusion in the graduate or under
graduate curriculum is concerned, however, the problem has dimen
sions that cannot be addressed via the traditional research route alone.
Software engineering technology is changing rapidly on many fronts.
Research activity typically provides in-depth experience in only a narrow

area whereas educators typically teach in more broadly-based contexts
(e.g., survey courses). Selection-oriented education is, therefore,
necessary to provide appropriate exposure to topics outside an
individual's research specialty.

There is also a widely recognized shortage of educators in computer
science and software engineering. Many institutions, particularly the
smaller ones, are forced to "borrow" faculty from related fields, such as
mathematics, to teach computer science courses. These faculty often
take advantage of improvement education by auditing courses and
using sabbatical leaves to fill in their computer science backgrounds.
However, since their primary allegiance is to another discipline, these
faculty are usually not in a position to evaluate and select new material
for inclusion in the curriculum. The problem is further aggravated by the
fact that, at smaller institutions, research is often not a high priority.
Selection-oriented education coupled with improvement education offers
a viable approach to training for faculty in these cases.

www.manaraa.com

126 Technology Selection Education for Software Engineers

rMise Selection-oriented Education Activities

The Rocky Mountain Institute of Software Engineering (rMise) is a non
profit organization supporting research and education in software en
gineering. Its intent is to serve all segments of the software engineering
community, including researchers, developers, practitioners, managers,
administrators and educators. Its primary focus is the transfer of
modern software technology from the research arena to the broader
professional community.

rMise sponsors many different types of activities, including demonstra
tion "fairs," workshops, study groups, tutorials, and research projects.
These activities are organized into several programs, each oriented
towards a specific segment of the community. For example, the rMise
Technology Improvement Program is oriented toward the research and
development community and includes activities such as: evaluation
oriented demonstrations of emerging state of the art technology; tech
nical workshops and study groups to address issues concerning the gap
between the state of the art and the state of practice; tutorials address
ing where the state of the art is, can be and should be; and research
projects to advance the community's technology transfer capabilities.

A selection-oriented view of rMise activities and programs is shown in
Figure 3. The Education Program is central in this arena. It provides a
wide variety of selection-oriented education activities for practitioners,
managers and administrators. It is supported by two more narrowly
focused programs: the Technology Improvement Program helps the
research and development community understand the state of the
art/state of practice gap and develop selection-oriented technology to
narrow it; the Education Support Program assists educators through the
development of innovative selection-oriented education support
capabilities and materials. As the figure indicates, a broad spectrum of
selection-oriented activities are already underway. For those activities
still in the planning stage, the figure gives an example of the types of
activities envisaged.

www.manaraa.com

Riddle and Williams

PROGR A M S
TECI\JliOLOGY EDUCATION

I MPROVEME T t:OUCATION SUPPORT
P ROGRAM I'ROGkAM P ROGRAM

R ESEARCIl investiGation of
PR OJ ECTS reMlrchlnd developmenl or;ll, electrooic medii

development of pototypc !e,hnology IUppocring
meuurCJ supporting de:mon.uraLion IOrtware engineering
Itchnology Jclcc.tion laboralor)" eduClHion

A TIITORIALS SummcrTutorial

1,"8'''''' C tutorials on the --~----~,.. nnorills on
T pasl. present and Aspen, 1984 intc&rlting .selcetiOl\~

I furure of Ad l iM oriented educ.don into

V environmcnl$ Col('lrldo SprinJt!J and "lnditional" acadr:rr:lic.
A'pen, 1985 pogmn<

I
T Doulder. 1986

I STUDY preJ"Af'loOn of I. while preparation of I white

E GROUPS Sonware En .. ironmenls paper on ·'Selection· poper on "U", of [n·cl ...
Improvement orierlted Education in ~ DemomtlltiOR.!l for

S "" WorkshOp. DauldeT, Arel of Soft~'!Irt Software Env;ronmcllL5
'::::- NoVcmlltr 1985 c· T«tin." FAuCl~on"

WORKSHOPS 'lmrd !ntem.tio",,1 .. s"n" .. r. Mtlhodology """kshop on lIIe
Conference no Ihe Work'Mr. Color.do p.pot'tion of

i" Softw>lre rr", .. ",. . Spring. , July 1985 technology $tlcction-
Breckenridge. oriented cxerci.!cs

Nov,mbor 1986

cvaluI.ti01H'riented s"n.. .. r. oducation support
DEMONST RA TION demonMrlltion~ M.thod(~ ogy maler,-)

"FAIRS" of a)ternali"c leading- EJ:p05itiQn, exposjtion
edge [ec.hnol0ty Boulder , Ju~y 19~6

GJ planned and all'udYoConductcd Rc.tivitie" 0 exl.mples or possible activii:lci

Figure 3. A Selection-oriented View
of rMlse Activities ilnd Programs

127

In the remainder of this section, we first describe several rMlse activities
from a technology selection point of view and then use these sample
activities to discuss the rMlse approach to selection-oriented activities.

Example of rMlse Activities

Summer Tutorial Programs

Each Summer for the last two years, rMlse has offered an extensive
tutorial program. The programs have included about twenty tutorials
each and have been attended by hundreds of participants, primarily

www.manaraa.com

128 Technology Selection Education for Software Engineers

from the United States but also from overseas, in both directions. A list
of the tutorials in the 1985 Summer Tutorial Program appears in Figure
4.

Management Technology

• Project Management of Software Engineers
R. Fairley, Wang Institute

• Building a Software Project Team
R. Fairley, Wang Institute

• Measurement for Management
D. Weiss, Naval Research Laboratory

• Improving Software Productivity
A. Pyster, Digital Sound Corporation

Tools and Environment

• Software Engineering Tools and Environments
L. Osterweil, University of Colorado

• Source Text Analysis Tools
F. DeRemer, MetaWare™ Incorporated

• Tools for Software Testing
L. Clarke, University of Massachusett L. Osterweil, Univer
sityof Colorado

• Pre-implementation Description and Analysis of
Software
W. Riddle, Software Design & Analysis, Inc. J. Wiledon,
University of Massachusetts

• Software Maintenance
C. McClure, C.L. McClure & Associates, Inc.

• Software Environment Design
L. Osterweil, University of Colorado W. Riddle, Software
Design & Analysis, Inc. L. Williams, University of Colorado

• Distributed Software Development Environments
L. Williams, University of Colorado

• Ada ™ Environment Issues
R. Taylor, University of California

Figure 4. rMise 1985 Summer Tutorial Program

Individual tutorials have treated state of the art and state of practice
technology in a variety of areas, among them: software methodology,
project management, software tools, software engineering environ-

www.manaraa.com

Riddle and Williams 129

ments, software analysis, and modern programming languages. The
tutorials have been organized into sequences, with the earlier ones
treating fundamental concepts and the latter ones treating advanced
topics. This organization has allowed participants to choose a subset
meeting their needs and experience levels. Many participants have
taken advantage of this; the average length of attendance at the
Institute's Summer Tutorial Programs has been three days.

The programs have also included tutorials that directly address tech
nology transfer and technology selection. A Technology Transition

tutorial was part of the program in 1984. The software methodology
tutorial sequences have included tutorials specifically designed to com
pare alternative methodologies. Several of the tutorials on software en
gineering environments have covered general paradigms for moving
technology into practice.

Software Environment Design Tutorial

Many of the tutorials in the Summer programs have provided the oppor
tunity for first-hand experience through exercises and demonstrations.
Some have had first-hand experience as their central focus. An ex
ample is the Software Environment Design tutorial, held both Summers.

In this tutorial, partiCipants work in groups to complete an extended,
multi-day design exercise. Initially, three scenarios are presented: a
large independent software house with branch offices in several cities; a
small, two-person company that produces application software for
several brands of personal computers; and a major industrial firm that
makes medical monitoring and control eqUipment that relies on em
bedded computer systems to perform most major tasks. Each group
first prepares a requirements definition for a software environment ser
vicing the needs of software personnel under one of the scenarios.
Each group then presents their requirements definition to
"management," with the other groups serving as management conSUl
tants. Depending on their needs and experiences, the groups then
focus on either project management issues, and prepare a project plan,
or technical issues, and prepare an architectural design. In either case,
they must address how existing state of the art and state of practice

www.manaraa.com

130 Technology Selection Education for Software Engineers

technology can be used for their environments. These plans and ar
chitectures are also presented to management. Throughout the tutorial,
the instructors play the dual roles of "senior management," visiting the
groups as they work and inquiring about what is happening, and
"consultants," helping the groups develop feasible plans and modern
architectures that take reasonable cognizance of modern technology.

Executive Summary of Software Engineering Issues

The audience for rMise activities was broadened, in the 1985 Summer
Tutorial Program, with the inclusion of a multi-day tutorial, Executive

Summary of Software Engineering Issues, designed specifically for top
level administrators. The intent was to provide senior managers with
intense introductions to a broad spectrum of software engineering
topics, in a way that would help them evaluate the potential for their
organizations.

This tutorial covered a wide variety of topics: artificial intelligence, rights
and data issues, human factors, large-scale systems, measurement
technology, software methodology, tools and environments, and
management support technology. For each topic, the emphasis was on
basic concepts, potential benefit and (both good and bad) experiences.
A large portion of the time was used for open discussion and interaction.
The instructors were themselves top-level administrators, allowing them
to interact with the participants on a peer basis.

Software Methodology Workshop

In conjunction with the 1985 Summer Tutorial Program, there was a
Software Methodology Workshop, co-sponsored by the Department of
Defense's STARS Program. It was attended by over 100 professionals,
primarily from industry and government. In the workshop's initial seg
ment, several technology developers, instrumental in founding specific
methodologies, gave presentations on the philosophy underlying their
approach to the software process. A open discussion among the
developers and the workshop participants ended this initial segment. In
the middle segment of the workshop, full-day tutorials on six different

methodologies were provided and each participant attended three. In
the final segment, each participant picked one of the three

www.manaraa.com

Riddle and Williams 131

methodologies they had studied and used it, with the instructor's and
other participants' help, to solve at least one of three specific problems.
This final segment ended with a plenary session in which representative
solutions in each methodology were presented and a group discussion
addressed the differences and similarities among the methodologies.

Software Environments Workshop

The primary activity in the rMlse Technology Improvement Program has
been a study group-style Software Environments Workshop, co
sponsored by the National Science Foundation [83]. The goal was to
determine how to improve the state of the art in software environments
over the next decade. It provided an indirect contribution to selection
oriented education by developing estimates of both the current and fu
ture state of the art in the software environments arena.

Participants formed groups to determine fundamental issues and re
quired activities in several areas: tools, distributed systems, database
systems, extensibility, artificial intelligence, integration, prototyping,
measurement and evaluation, monolingual versus multilingual environ
ments, human interfaces, and evolutionary versus revolutionary ap

proaches to improvement.

They also addressed several global topics. First, to provide a context
for the issues and activities, they developed a characterization of the
software environment situation in the mid-1990's in comparison to the
situation today. Second, they considered the general nature of or
ganizations that could successfully undertake the required activities.
Third, they reconsidered the results of a Similarly-intentioned workshop,
held five years ago [74], and updated this previous workshop's assess
ment to reflect the community's emerging concern for general systems
issues and the software creation and evolution process.

The rMlse Approach to
Selection-oriented Education

State of the art Technology. Many factors have influenced the choice
of topics covered by rMlse activities. Within the ever-present boun
daries imposed by resource availability, attention has primarily been

www.manaraa.com

132 Technology Selection EducatIon for Software EngIneers

given to topics where the state of the art is well-developed and the gap
between the state of the art and the state of practice is larger than
average. Several studies (see, for example, [109]) have indicated that
the state of practice is quite far behind the state of the art in software
methodologies and software tools/environments. rMlse has em
phasized these topics. It has also treated subjects, such as project
management, that directly relate to these topics and affect the extent to
which this technology is used in practice.

The rMise approach to addressing the state of the art has, therefore,
been to emphasize "high payoff" areas in which there isa significant
amount of available state of the art technology that is not being used in
practice.

Coverage of Technology Transfer. With the exception of the
Technology Transition tutorial, few rMise activities have focused ex
clusively on the processes involved in technology transfer. Rather, the
coverage has been indirect, with the inclusion of material in some of the
Summer Tutorial Program activities. The Software Environments
Design tutorial and several of the other Tools and Environments tutorials
have, for example, treated general paradigms for the transfer of
tool/environment technology. It is expected that this indirect approach
will continue for the foreseeable future, until our understanding of and
experiences with software technology transfer mature significantly
beyond their present levels.

Identification, Evaluation and Choice Techniques. In rMise ac
tivities, these subjects are treated within the context of specific tech
nology arenas. This approach emphasizes exposure to the state of the
art, with specific selection-support techniques being discussed with
respect to their use in specific technology domains. Selection-related
material that has been included in the tutorials includes: cost estimation
techniques, general paradigms for integrating technology, technology
classification schemes, measurement technology, comparative evalua
tions of available technology, cost/benefit analyses, and techniques for
effective participation in team efforts.

www.manaraa.com

Riddle and Williams 133

This indirect treatment of selection techniques has also included com
parative evaluation exercises. Simple instances have occurred in the
Software Environments Workshop, in which the participants differen
tiated between technology that should be emphasized in the near term
and technology to be emphasized in the medium term, and the Software
Environment Design tutorial, in which participants chose technology to
include in their environments. More extensive comparison was done in
the course of the Software Methodology Workshop. This workshop's
format was generally judged to be successful at providing insight into a
variety of modern technology options to a level of detail allowing
(informal) comparative assessment. The format would seem to be of
general utility for selection-oriented, experience-based studies of a wide
spectrum of software technology.

As in the case of technology transfer in general, rMlse, therefore, takes
a primarily indirect approach to selection technology. For the foresee
able future, direct treatment will probably be limited to the Technology
Improvement Program and include workshops and study groups on fun
damental issues and concepts. The state of the art and state of practice
in technology selection may eventually mature to the point that direct
treatment in specific tutorials will be possible. But, because selection
support techniques will always be best understood in the context of their
application to specific situations, it would seem that an emphasis on
indirect treatment will always be most appropriate.

Experience-based Content. Reports on experiences in adopting and
using software technology have been a part of the vast majority of the
tutorials. The rMlse approach has been to seek instructors who have
had extensive experience. This approach was also used in choosing
participants for the Software Environments Workshop: people actually
involved in the design and construction of environments accounted for
about half the participants.

Decision-making Orientation. The rMise approach has been to orient
its activities specifically toward technology selection decision makers.
The Executive Summary of Software Engineering Issues tutorial was
specifically designed for top-level decision makers. Most of the offer-

www.manaraa.com

134 Technology Selection Education for Software Engineers

ings in the Summer Tutorial Programs have been oriented toward
project managers and middle-level management, or people aspiring to
these positions. In addition, decision-makers were specifically included
in the Software Environments Workshop and this workshop's result was
prepared for use by those responsible for deciding where to invest time
and effort in the improvement of the state of the art for software environ
ments.

Exercises. Exercises have been a key component of many rMlse ac
tivities. Tutorials offering extended exercises have been included in
both the software methodology and tools/environments tutorial se
quences (e.g., the Software Environment Design tutorial). A con
centrated effort has been made to assure that these exercises do not
suffer the problems noted in the General Form of the Program. In
addition, several other tutorials have included simple, experience
providing exercises.

Unfortunately, it has not been possible to provide facilities for "live"
demonstrations or provide a laboratory capability. This will be cor
rected, somewhat, in the upcoming Software Methodology Exposition.
Manual and automated tools supporting a variety of methodologies will
be demonstrated during the exposition, and partIcipants will have the
opportunity to gain hands-on experience with this technology. It is an
ticipated that this sort of activity will become an increasingly larger part
of rMise programs, and plans are being made for eventually providing a
full-capability laboratory supporting software technology demonstration
and experimentation.

Interactive Sessions. The rMlse approach to fostering interaction is to
keep the number of participants small. Participation in the tutorials is
restricted on a first-come-first-served basis to assure highly interactive
learning opportunities. Study groups are held to a maximum of twenty
five participants to foster interaction. Even when the number of par
ticipants is small, the opportunity is sought to divide the group into work
ing groups of three to five people (e.g., the Software Environment
Design tutorial and the Software Environments Workshop). When the
number of participants is large, as in the case of the Software Methodol-

www.manaraa.com

Riddle and Williams 135

ogy Workshop, the amount of time that the group spends together is
held to a minimum and much of this is used for open discussion.

Instructors. rMlse has been fortunate to be able to attract instructors
for its tutorials (and participants for its study groups) who are well
versed in their fields, quite familiar with both the state of the art and the
state of practice, able to handle the rigors of short, intense sessions,
and willing and able to participate fully in freewheeling discussions. The
approach has been to find top-quality people who are heavily involved in
defining and expanding the boundaries of their field of interest; no other
approach would satisfy the instructor criteria specified previously.

Summary

Selection-oriented education provides an exposure to new techniques
and concepts rather than an in-depth coverage of the techniques and
concepts. The coverage is sufficient to impart an appreciation of the
technology's applicability and cost-to-benefit ratio. The intent is to en
able management and technical personnel to make well-founded deci
sions about whether or not to adopt a particular technology.

A selection-oriented education program must satisfy many criteria. It

must provide an extensive introduction to the state of the art. It must
cover all the activities supporting technology transfer and show how
they interact with the specific activity of technology selection. It must
cover a wide variety of techniques for performing technology selection
and demonstrate their use. It must include information on actual ex
periences. It must service the needs of those responsible for selecting
technology; often this is an individual who is trying to decide whether or
not to upgrade his or her own capabilities. It must provide for a high
degree of interaction among instructors and students so that needs of
individual students are articulated and accommodated, the applicability
of the material to personal situations is clear, and students are able to
learn from each others' experiences. And it must be conducted by
knowledgeable, experienced. articulate. flexible instructors who are well
accustomed to short. intense, interactive sessions.

www.manaraa.com

136 Technology Selection Education for Software Engineers

The Rocky Mountain Institute of Software Engineering (rMise) has
sponsored a number of activities that contribute to selection-oriented
education. The primary activity in this arena has been its Summer
Tutorial Program. rMise also sponsored a workshop that emphasized
the comparative assessment of alternative methodologies through large
group discussion of experiences gained in small-group exercises. The
Institute organized and ran a study group to identify issues fundamental
to improving the state of the art for software environments. Finally, a
software methodology exposition is planned to provide more individual
ized learning through direct experience.

The rMise approach to selection-oriented education emphasizes ex
posure to the state of the art in software methodology and software
tools/environments, two areas where the gap between art and practice
is particularly wide. Techniques supporting technology selection are
treated indirectly, in the context of their use rather than as subjects of
direct focus. Experiential data is included as much as possible,
primarily through the use of personnel who are actively involved in both
developing the technology within their fields and transferring it into prac
tice. The needs of decision-makers at the project management, middle
management and top-executive levels are met by designing specific
tutorials to meet these needs. Interactive sessions are assured by limit
ing participation so that groups are small, dividing participants into work
ing groups of three to five people whenever pOSSible, and devoting the
majority of large-group time to open discussion. Quality instruction is
assured by employing experienced instructors who are instrumental in
defining and expanding the boundaries of their respective fields.

The rMise enterprise has provided a wealth of experience in setting up
and running selection-oriented education programs. (And it promises to
provide significantly more as its activities are expanded in the future.)
The body of this paper has reported the positive experiences, and, in
closing, we would like to offer a few experiential observations about
what can go "wrong." First, we have found little interest in activities that
directly address technology transfer and technology selection per se.
There is interest in these topics within the context of specific situations
- for example, which configuration management tools should be

www.manaraa.com

Riddle and Williams 137

adopted and how should they be introduced - but there is essentially
no interest in them as "stand-alone" subjects. Second, we have found
little interest in revolutionarily new technology that, while it may be a "hot
topic" in the research and development community, is sufficiently dif
ferent from existing technology that its introduction would cause a large
perturbation. The interest is in much more conservative advanced tech
nology for which there is little question about applicability and ease of
introduction. Third, the majority of students will be seeking the answer
and feel that there must be something that will solve all, or most, of their
problems if only they could find it. One of the major opportunities, and
one of the hardest tasks, is to get students to realize that they have the
wrong objective. Finally, some students (luckily a minority) will lack the
flexibility and tolerance for ambiguity that is necessary when considering
technology selection. They will be sophisticated enough to know that
there is no Single answer, but they will want structured courses that
deliver logical assessments of what technology is good for a wide
spectrum of specific situations.

www.manaraa.com

Graduate-level Software Engineering Education:
A Practitioner's Viewpoint

S. E. Smith
IBM Corporate Technical Institutes

Abstract. The definition of what software engineering is and what
constitutes a software engineer are issues of continuing question and
debate. In a sense, we find ourselves at the mercy of having created
a title that has not yet been well reconciled with a body of scientific
knowledge a la electrical or other fields of engineering. A consensus
on its meaning is still ahead of us, the widespread acceptance of
software engineering as an appropriate label reflects a pervasive
sense of urgency that programming professionals must operate within
certain bounds of discipline and control that become inherent in the
profession. The breadth of acceptance of software engineering, as an
urgent professional discipline need, embraces industry, government,
and academia. Each of these segments of the community has made
and continues to make significant contributions to the rapid evolution
of the programming profession. As a result, we are in a position today
to develop recommendations on the content of an academic program
which can, in a concerted fashion, accelerate the cUltivation of a
software engineering profession. This paper will, based on my ex
periences, recommend a direction for a graduate-level program in
software engineering. It does not attempt to define a specific set of
courses and sequencing.

Introduction
The past two decades have been witness to significant progress in the
field of software development. Much of that progress has been ach
ieved empirically through the experiences of programming professionals
with little of it having been captured in a form that can readily benefit
newcomers to the profession. With that in mind there is a real need to
identify and offer formal education programs which draw from the

knowledge and experiences of government, industry and academia.
The initiative of the Education Division, Software Engineering Institute,
Carnegie-Mellon University to develop recommendations for a Master of
Software Engineering curriculum is a timely and welcome effort, which I
applaud.

www.manaraa.com

Education Focus

A review and analysis of where and why software development projects
experience difficulty is necessary to establish a frame of reference for
identification of education needs for graduate software engineers. In
software projects, success is measured in terms of the timely delivery of
function that the target users need and will buy, in a cost effective way,
and in a form that is non-disruptive to user's operations (Le., reliable,
installable, meets performance expectations, maintainable, usable) and
facilitates extendability/enhancement. More often than not, mostaf
these objectives are met; however, the increasing demand for software
products, in increasingly complex applications and in an environment of
scarce skills, requires that the technical and project management exper
tise of software professionals be as leading edge as possible. What
does experience suggest is needed in a graduate-level software en

gineering curriculum?

MSE Curriculum Recommendations

Undergraduate computer science programs prepare students to be
programmers. That is, the focus of training tends to limit graduate's
skills to those that are operative on relatively small projects or in the
latter stages of large programming projects where decomposition of
development tasks has been done. Students are capable of quickly
becoming effective in environments where their assignments are
defined within bounds which facilitate intellectual control over their work.
Large projects as well as small have a critical need for the talent and
skill of these professionals.

In the case of large projects, in particular, there is an urgent need for
additional skills which deal with the early or planning phases of develop
ment to assure that the identification, validation, and verification of re
quirements; estimation of work scope, specification, and design leads to
a decomposition and description of the required product into entities
which facilitate timely implementation by assigned programmers.

In addition to the product planning and structuring skills needed, it is
critically important that an explicit process discipline be adhered to

www.manaraa.com

140 Graduate-level SE Education: A Practitioner's Viewpoint

which provides for the control, management, and improvement of
process productivity and predictability as well as product quality in terms
of functional capability, reliability, installability, maintainability, perfor

mance, and usability.

The foregoing provides a frame of reference for identification of a core
of base set or graduate level courses in software engineering, primarily
for students who will be members/leaders of relatively large software
development projects, and which have two fundamental objectives.
First, develop an appreciation for, an understanding of, and a commit

ment to certain principles:

• Software is developed to satisfy customer needs and
produce profit.

• Discontinuities in the course of product definition, specifica
tion, design, implementation, integration, use, and main
tenance require communication through the creation and
maintenance of effective product description materials.

• Early reconciliation of product capabilities and customer
needs is essential; e.g., prototyping.

• Development process discipline is fundamental and must
be rendered explicit; e.g., discrete steps with entry and exit
criteria, measurements, data collection/retention and
analysis.

• Management of defect content must reflect a philosophy of
defect prevention versus defect detection; e.g., correctness
of design, intellectual control, statistically based testing for
verification purposes.

The second objective of the core material is to provide students with
alternatives on "how" to deal with the "what" reflected in the first objec
tive. Specific material to be covered would be comprised of surveys,
case studies, and theory from texts, periodicals, and professional
society proceedings. The intent is to give students knowledge and un
derstanding of what is considered the "best of the breed" current prac
tices and information on viable, yet unproven, alternatives. Lecture and
study would be complemented heavily with workshops. In addition, a
Significant team project, which brings the key principles and their impor
tance into play, would be required.

www.manaraa.com

Smith 141

Beyond the core, students would have an opportunity to enroll in
selected areas of specialization within the context of a general software
development environment; e.g., requirements, testing, fault tolerance,
asynchronous design. There should also be an opportunity to selec
tively enroll in courses dealing with product technology specialization;
e.g., database, data communications, storage management, etc.

Graduates of the program would be well positioned to deal with the
planning, control, and management of any large software project. Their
specialization selections would position them for specific roles on a pro
gramming development team. Elective courses in product technology
areas would develop students' expertise for development of specific
classes of products. Figure 1 depicts a model which represents the
concept of the curriculum being recommended. The core (which in
cludes the masters project) comprises 2/3 of the total credit with elec
tives (either development process or product technology specialization)
making up the remainder.

Technology
Speciality

Process
Speciality

Core

r------,-------,--------r------,

Team Project

Courses:

• Requirments
• Estimating
• Proto typing
• Applied Statistics (Software Orientation)
• Testing (Including System Testing)
• Design Language
• Process (Measures, Data Collection)
• Financial Case Studies (Make vs. Buy)
• Documentation
• Project Management

Figure 1. MSE Curriculum Model

www.manaraa.com

142 Graduate-level SE Education: A Practitioner's Viewpoint

Summary
There are several technical subjects relevant to the advancement of
software engineering in areas such as design methodologies, testing,
statistical quality control, etc. However, in my view, the highest priority
for a MSE curriculum is best placed on the planning, management, and
control aspects of software development.

www.manaraa.com

Some Observations on the Nature of
the Software Engineering "Problem" and Their

Implications for Software Engineering Education

William A. Wulf
Tartan Laboratories

Abstract. The term "software engineering" is somewhat synonymous
with "methodology." Yet, methodology should not playa major role in
professional education, because a methodology is a tool, which will
become obsolete: it should be taught, but it should be treated as a
tool, not as the central topic of the discipline.

Introduction

I intensely dislike position papers that take a negative, "anti-" pOSition.
Yet, guess what - that's exactly the kind of paper I've written here.
Specifically, I'm going to be anti-methodology. At least I am going to be
anti- the notion that methodology ought to playa major role in a profes
sional educational program.

In the context of this paper, I intend the term "methodology" to span a
very broad spectrum of topics, including programming languages
(notably the structuring features such as strong typing and data
abstraction/encapsulation), programming methodologies (such as "top
down design," "modular decomposition"), formallifecycle models, struc
tured requirements analysis, program design languages, and so on.

I am concerned that the term "software engineering" has become almost
synonymous with "methodology." To the extent that this is true, and
hence there is a tendency to organize professional software engineering
curricula with this bias, I think we are making a serious mistake.

The Rationale

I will discuss my reasons for my concern under several headings:
• Misplaced Emphasis

• The Character of the Problem Will Change

• Methodologies are NewSpeak

• Formalized Methodologies Aren't Self-Evidently Useful

www.manaraa.com

144 On the Nature of the SE Problem

I trust the reader will understand that I am not anti-methodology, per se.
I have made research contributions to several of the topics listed above,
and I remain a strong proponent of many of them. Rather, my concern is
that software engineering is a broad and evolving topic, and that an
educational program should not narrowly focus on the hot topic of the
moment.

Misplaced Emphasis

Every educational program is a balance between material of immediate
utility and long term stability. The electrical engineering student, for ex
ample, both learns Kirkoff's laws and experiments with contemporary
components and equipment. Kirkoff's laws will not change, but, frankly,
are not of as much immediate value as a working knowledge of the
latest oscilloscope. Merely a knowledge of the lat.est oscilloscope,
however, is of only temporary utility.

Methodology is, at best, like an oscilloscope. At worst, it is like a tube
tester, a device whose utility will be made obsolete by advancing tech
nology.

Software engineering is, in many essential respects, no different from
other kinds of engineering - and, in particular, like other engineering,
good software engineering is based on solid science and mathematics.
Methodologies are neither of these; they are, rather, management tech
niques based on a collection of observations about our human limita
tions in dealing with complexity and/or communicating with each other.

Computer science as a whole, and software engineering in particular, is
a young field. We don't know exactly what mathematics, for example, is
most germane. Some of us may even suspect that the "right" form of
mathematical models for algorithmic process remain to be invented.

Faced with uncertainty about the "right" mathematics and science, there
is a tendency to place a heavier emphasis on s,horter-term, obviously
utilitarian material - e.g., methodology. I believe this is misplaced. It
would better serve both the student and the field to teach the "wrong"
mathematics; doing so would at least increase the mathematical
maturity of the students.

www.manaraa.com

Wulf 145

The Character of the Problem Will Change

The available data suggest that the amount of code required to support
a single application doubles roughly every three years (Le., it grows
25% per year). It is interesting to contrast this with the growth in primary
memory size, which has doubled every 2.2 years. I believe that this

indicates that the demand for functionality, as reflected by program size,
is essentially unbounded and that only the availability of memory and
our ability to produce software limits its growth.

Programming productivity has increased only 4-6% per year over the
last 20 years. As practiced, programming is a craft, not engineering. It
is labor intensive, and all dimensions of the quality of the programming
product are determined by the craftsmanship of the programmers that
created it.

The demand for functionality over that period has been satisfied by in
creasing the number of programmers, not by increased productivity.
That technique will not work indefinitely; indeed, we are rapidly ap
proaching the point at which productivity is the limiting factor in satis
fying the demand for new functionality.

Faced with these observations, there are only three alternatives:

• demand is not really unbounded, and happily, we are just
about to satisfy it, or

• we will not be able to satisfy the demand, or
• software must be produced some different way.

I don't believe the first, and I won't accept the second without having
explored the third. Methodological approaches have not, and will not
produce a compounded 25% per year increase in productivity. There
fore, software will be produced differently. We may not yet know what
that different method will be, but of necessity it will not contain the
problems that spawned the current methodologies.

www.manaraa.com

146 On the Nature of the SE Problem

Methodologies are NewSpeak

All software methodologies are management techniques - either
management of people, in the obvious sense, or management of com
plexity, in the sense of the various structured design and/or coding tech
niques.

They are, further, restrictive techniques. Like Orwell's NewSpeak, by
prestructuring what can be said, they try to prevent the
designer/programmer from uttering bad programs. NewSpeak is the an
tithesis of good education, which strives to broaden the student's
perspective, foster understanding, and prepare them to think indepen
dently and constructively.

Strong typing is a good example. The usual argument for strong typing
is that it prevents certain kinds of programming errors, or at least
catches them during compilation rather than forcing much more expen
sive debugging. This is quite true. Alas, what is also true is that the
present state of the art in typing mechanisms also prevents writing per
fectly correct, and frequently more understandable and maintainable
programs.

Formalized Methodologies Aren't Self-Evidently Useful

I don't believe people are stupid, at least not all of them are stupid all of
the time. Thus if most people behave in some particular way, perhaps
there's a good reason for it.

Demonstratably, most of the popular topics in software engineering,
whether the use of ever higher-level programming languages or one of
the structured design techniques, have little appeal for the programmer.
They can be enforced by management fiat but, they are not techniques
of choice.

How many of the people attending this workshop regularly use a com
plete formal methodology, from formal requirements analysis through
configuration control in their personal programming? I don't.

www.manaraa.com

Wulf 147

Why? Objectively, methodologies are more burden than help for pro

gramming in the small - which is what the average programmer does
most of the time. Moreover, if the industry is to achieve significant and

sustained increases in productivity, an objective ought to be to make all
programming problems into programming-in-the-small problems.

Conclusion

Should methodology be taught in a professional software engineering
program? Of course! But it should be treated like an oscilloscope, like a

tool that will become obsolete, not as the central topic of the discipline.

Perhaps, in fact, the most useful role for methodology in such a program
would be to discuss their limitations. Like Knuth's well-known paper on
programming with GOTOs, discussing the limitations that all

methodologies have, even to the point of interference with constructing
good programs, would be extremely enlightening.

www.manaraa.com

Section II
Part 2

Current Software Engineering Curricula

Since the late 1970s, several programs leading to a master's degree in
software engineering have been started. The papers in this part
describe the content of four of these programs, and the experiences of
the implementors.

The two American programs have existed long enough that changes
have been made in response to different perceptions of the discipline
and need. James Comer and David Rodjak chronicle the evolution of
their curriculum at Texas Christian University, and Everald Mills
evaluates the state of his program at Seattle University. Both univer
sities are in urban settings with considerable high technology industry in
the area. They share an orientation toward educating experienced prac
titioners.

In contrast, the pair of United Kingdom programs are aimed at
"undergraduates" in the sense that the students in them do not normally
have work experience in software engineering. Imperial College in Lon
don, as described in M. M. Lehman's paper, has q four year course
leading to a master's degree. David Budgen and his colleagues at the
University of Stirling in Scotland have a curriculum that includes a sig
nificant internship period in industry.

www.manaraa.com

Adapting to Changing Needs:
A New Perspective on Software Engineering

Education at Texas Christian University

James R. Comer and David J. Rodjak
Texas Christian University

Abstract. In response to the need for skilled software engineers,
Texas Christian University, in the Fall of 1978, established a Master's
Degree in Software Engineering, the first such degree program of its
kind in the country. After three years of experience with this program,
the curriculum was revised in 1981 to reflect the changing needs of
the software engineering profession. This revised curriculum, cur
rently in place at Texas Christian University, is described and
evaluated. Avenues of future curriculum expansion are explored.

Introduction

It has become evident in recent years that there are significant problems
facing the computer industry with regard to the support and develop
ment of reliable computer software systems. Extraordinary advances in
the development of hardware systems architecture has resulted in a
much publicized software predicament. That is, as the costs associated
with computer hardware fall, larger, more complex software systems be
come economically feasible. As such, the demand for computer
software has accelerated to the point that the means of supply are being
greatly exceeded. Consequently, the major technological concern for
the 1990's is a rapidly expanding gap between the demand for software
and the ability of academic, industrial, and governmental organizations
to supply it.

The need for reliable, well engineered software has reached almost
epidemic proportions. A current worldwide market of $18 billion, two
thirds of which is held within the United States, is expected to increase
to approximately $55 billion by 1987 [70]. With increases of this mag
nitude, it is of paramount importance that industry be provided skilled
individuals who are able to apply sound engineering and management
principles to the analYSis and design of computer systems software.

www.manaraa.com

150 A New Perspective on SE Education at TCU

This is obviously not the situation that currently exists. To further under
score the problem, one is referred to various onerous predictions being
made by knowledgeable software scientists. In November, 1983, it was
estimated that the demand for software at the national level was in
creasing by approximately twelve percent per year while the supply of
skilled software developers was increasing at the rate of four percent
per year. Coupling these percentages with an estimation that the
productivity of these same software developers was increasing at a rate
of about four percent per year results in a cumulative four percent gap.
At this rate, it is projected that industry will be left with a shortfall of
between 800,000 and 1,000,000 software personnel by the year
1990 [13].

In recognition of the need for advanced study in the field of software
development, Texas Christian University (TCU), in the fall of 1978, in
stituted a graduate degree in software engineering. Due to external
pressure, prompted by the absence of an engineering college at TCU,
the program was renamed Master's of Software Design and Develop
ment (MSDD) in 1980. The original intent of the program was to ex
amine prevalent programming practices and methodologies that might
be useful for furthering the development, management, and main
tenance of reliable systems software. These goals continue to serve as
the primary thrust of the program.

However, since the program's inception, the field of software develop
ment has changed considerably. Many important new techniques and
methodologies have evolved and have come to the forefront. In an
effort to respond to this maturation, the degree program at TCU was
recently examined and updated. The purpose of this paper is to assess
the current status of software engineering education at TCU and to dis
cuss the current curriculum and the motivations for its evolution.

www.manaraa.com

Comer and Rodjak 151

The Early Days

Historical Perspective

During the mid-1970's, a dramatic increase in the use of computer
software was experienced by many of the nation's high technology com
panies. In particular, companies involved with aerospace and semicon
ductor manufacturing, geophysical exploration, and communications

systems development found themselves face to face with a growing
need for more sophisticated software. In some cases, this need was

created because the software was embedded in the product being
manufactured. In other cases, the software was needed to support
other aspects of the product line such as engineering research and
development, material management, product manufacturing and testing,
and worldwide logistics. All too frequently, attempts to develop specific
software in support of these areas were less than successful. Common
problems often included missed schedules, budgetary overruns, and
software that simply did not meet necessary technical requirements.
Consequently, upper management soon realized that software was a
problem looking for a solution. They just as quickly recognized that they
did not know how to achieve a solution.

The emerging problem confronting high technology companies of this
period was twofold. On the one hand, software was generally perceived
to be a " ... black box created by programmers who practiced their art ... ";
as such, many companies did not possess the skills to manage or
measure the progress of the software development process. At the
same time there was a rapidly growing shortage of individuals having
the skills to develop this critically needed software. The traditional ap
proaches for solving such personnel shortages were not viable. Not
only were software engineers not being produced by academia but there
was a shortage of experienced personnel to be lured away from other
companies (methods frequently used to staff more classical engineering
disciplines). In response to these shortages, an occasional company

turned to a different staffing approach, that of establishing programs,
internally, for the purpose of cross training employees in the disciplines
of software engineering [68, 9]. It is generally difficult for an outsider to

www.manaraa.com

152 A New Perspective on SE Education at TCU

judge the success of such a program. However, such cross training
efforts frequently produce individuals who are able to code, but who
often lack the depth and breadth of understanding of the entire software
life cycle. Clearly these are processes that characterize the software
engineer. Overall, the best approach to satisfying the shortage of skilled
software designers seems to lie with the establishment of curricula by
academic institutions.

The Original Curriculum

TCU responded to this early need by instituting a Master's Degree in
Software Engineering in the Fall of 1978. The formulation of the initial
curriculum began with a careful analysis of:

• existing surveys of software engineering needs and
objectives [100],

• discussions with local industrial managers and experts,

• ACM's preliminary work on a master's curriculum [28, 56],
and

• observations of what courses were being offered by various
other universities [51].

It was determined, as a result of this analysis, that TCU's curriculum
should be based upon the life cycle approach to software engineering
with heavy emphasis on the management of software development. To
be included in the program requirements were courses in verbal and
written communication techniques, software design and development
methodologies, and group participation methods.

As a result of early evidence, it was determined that the program should
be oriented towards part-time students who could be accommodated, at
the outset, through evening college classes. This was largely due to the
decision that admission to the program would be limited to professionals
already having practical experience in the software development en
vironment. It was also felt that since TCU was within easy commuting
distance of a large number of high technology companies, there would
be an adequate number of students attracted to the program. These
early decisions proved to be successful as the program has now grown
to approximately 50 students - all of whom are full time employees
within the software development community in and around Ft. Worth.

www.manaraa.com

Comer and Rodjak 153

A list of the courses offered as a part of the original software engineer
ing curriculum is shown in Figure 1. Of these courses, all were required,
with the exception of SDD 6104, which was provided as a "leveling
course" for students having insufficient background in the computer
sciences. In addition, the program required that each student take at
least six hours of electives. These were most generally taken in the
school of business or the Computer Science Department. A detailed
discussion of the original degree program can be found in Appendix I.

TCU MSDD COURSE TITLES
SDD 5143 - Introduction to Software Design and Development.
SDD 5193 - Communication Techniques in the Software Design

and Development Environment.
SDD 6104 - Overview of Computer Science.
SDD 6113 - Methodologies of Software Development.
SDD 6123 - Requirements and Specifications for Software.
SDD 6133 - Software Design.
SDD 6142 - Software Design Laboratory.
SDD 6153 - Management of Software Development.
SDD 6163 - Economics of Software Development.
SDD 6193 - Effective Participation in Small Task Oriented Groups.
SDD 7113 - Software Implementation.

Figure 1. MSDD Courses - Before Revision.

As evidenced by Figure 1, the original software engineering curriculum
was oriented towards teaching the management of software develop
ment as professed by Boehm [11] in 1976. From its initial inception the
program was conceived and administered as a professional program to
be offered only to software managers and developers already having
significant industrial experience. As such, students entering the
program came from a broad cross-section of industry. Experience
ranged from business and management environments to more technical
engineering environments, and while each student was interviewed prior
to admission into the program, the level of technical and management
expertise varied greatly. Consequently, as with all new programs, dif
ficulties were frequently encountered. Course content often had to be
adjusted to meet the needs of both classes of students, that is, both
technical and nontechnical. An even greater problem concerned the
lack of quality textbooks. Indeed, in some cases textbooks simply did
not exist at all - good or bad! Thus, many of the early courses were
taught using seminar notes, personal knowledge or experiences, or
whatever other resources an instructor might have available. Clearly,
not an altogether desirable situation from the student's standpOint.

www.manaraa.com

154 A New Perspective on SE Education at TCU

The Current State

Changing Needs

In 1981 the content of TCU's curriculum for the Master's Degree in
Software Design and Development was re-examined and subsequently
revised. The basic changes were intended to accomplish a balance
between the technical and management components of the program.
By now, it was understood that training in the management of software
engineering projects was important but was not, in and of itself, suf
ficient to solve the many problems confronting the software develop
ment community. It was clear that there was a new, even greater need
for sound technical training in the methodologies and techniques of
software engineering.

Many early software managers were not able to assess the risks and
benefits of new technologies that could be directly applied to their
various projects. Quite frequently this failure was due to a lack of under
standing of the new technologies that were available. Clearly, in an
industrial environment, new concepts must be accepted and ap
preciated at the management level before changes can be imple
mented. In an effort to address these needs, TCU's curriculum was
modified to include courses that would provide a sound foundation in the
technical aspects of software engineering. Many of the existing
management oriented courses were combined in an effort to reduce the
overlap existing from one course to another. They were, however, not
altogether removed from the curriculum.

Attempts to revise the program were aided by the increased availability
of published materials in the various areas of the emerging software
engineering discipline. In the three years from its inception to its revi
sion, significant new material had been published and was now avail
able for incorporation into the curriculum. Indeed, in some instances,
the revision was directly guided by the proliferation of new textbooks
and published papers attesting to the growing universe of software en
gineering knowledge.

www.manaraa.com

Comer and Rodjak 155

The New Curriculum

As a result of the revision, several new course subjects were considered
and integrated into the curriculum in an effort to introduce new software
engineering topics. Courses were designed in such areas as software
metrics, data bases, Ada, computer architecture, and security and
privacy. Also included was the study of the various automated tools
related to the software development life cycle. Figure 2 contains a list of
the courses comprising the revised MSDD program. The reader is
referred to Appendix II for a full discussion of the new program.

Figure 3 shows a typical degree plan sequence that most students are
counseled to follow. As indicated, it is possible to satisfy the degree
requirements in seven semesters by enrolling and successfully complet
ing at least two courses per semester. Since the majority of students
enrolled in the MSDD program are employed as professional software
developers, most are unable to attend classes more frequently than
twice a week. Consequently, in order to accommodate part-time stu
dents, all classes are scheduled in the evening college and meet once a
week for three hours.

TCU MSDD Course Titles

SOD 5143 - Introduction to Software Design and Development
SOD 6013 - Ada Design and Development
SOD 6023 - Advanced Topics in Systems Software
SOD 6033 - Computer Facilities Management
SOD 6043 - Software Quality Assurance and Metrics
SOD 6053 - Security and Privacy
SOD 6104 - Programming Structures
SOD 6113 - Modern Software Requirements and Design

Techniques
SOD 6123 - Applied Design, Programming, and Testing
SOD 6153 - Management of Software Development
SOD 6163 - Economics of Software Development
SOD 6173 - Computer Systems Architecture
SOD 6183 - Database and Information Management Systems
SOD 6193 - Effective Communication in Small Groups
SOD 7113 - Software Implementation Project I
SOD 7123 - Software Implementation Project II

Figure 2. MSDD Courses - After Revision.

www.manaraa.com

156 A New Perspective on SE Education at leU

Semester

Year ~--------------------~------------------~

2

3

4

Fall

• SDD 5143
(Intro. to SFW Design & Develop.)

• SDD 6104
(Programming Structures)

or elective

• SDD 6123
(Applied Design, Prog., &

• SDD 6153
(Mgmt. of SFW Development)

• SDD 7113
(SFW Implementation I)

• elective

• elective
Li Comprehensive Orals

Spring

• SDD 6173
(Computer Systems Arch.)

• SDD 6113
(Modern SFW Requirements)

• SDD 6183
(Database & Info. Mgmt. Sys.)

• SDD 6163
(Economics of SFW Develop.)

• SDD 7123
(SFW Implementation II)

• elective

Figure 3. Typical Degree Plan Sequence.

A concerted effort was made to capitalize on new, readily available
textbooks and to eliminate duplication within the courses being offered.
Included in Appendix II are textbook titles that have been used most
recently in each of the courses now being taught. Further, to reduce
inconsistency, several adjunct professors from industry were identified
and now regularly teach in the program. Additional software develop
ment tools were identified, and where feasible, were procured along with
a VAX 11/780 computer system for use in the program. Since the in
stallation of the new curriculum, dramatic results have been observed.
The MSDD program is now well established and is beginning to ex
perience a steady growth rate.

The prerequisite graph for courses taught in the MSDD program is
shown below in Figure 4. All students are required to complete a core
curriculum consisting of nine courses. In addition a variety of MSDD
elective courses are regularly scheduled and students are allowed to

take these or to choose electives from outside the Computer Science
Department. Currently, due to the present size and makeup of the stu
dent body, all courses are offered but once during the academic year.

www.manaraa.com

Comer and Rodjak 157

As such, students are encouraged to closely follow the degree plan se
quence shown in Figure 3. As mentioned earlier, the "leveling" course,
SDD 6104, is required of those students having insufficient formal back
ground in computer science. This course may be taken concurrently
with SDD 5143 during the student's first semester at TCU.

Advanced
Toplc:a

Acta
Doslgn &

t---" =~.--=-B_._T""_.;....n -*l Programming
.... Concurrently SIrUC1ur ••

Figure 4. Prerequisite Graph for MSDD Program.

The Curriculum Environment

Within the past two years, significant new computer resources have
been acquired and made available to students enrolled in the MSDD
program. Many of the hardware and software tools that are available
are shown. in Figure 5 below. The two mainframe computers, the IBM
4341 and the VAX 111780, are used in the majority of the courses being
taught. However, several specialized hardware tools are available in
the form of personal computers, micro-processor development systems,
and artificial intelligence systems. In addition, several varieties of
software packages are available. Included among these is a relatively
complete set of programming languages, editors, and debuggers as well
as a limited number of software development tools. Most of these tools
are used in the classroom environment and in support of students pur

suing independent research.

www.manaraa.com

158 A New Perspective on SE Education at TCU

MSDD Facilities

• IBM 4341
- 12 Meoabytes Main Memory
- 3.7 Gigabytes On-Line Disk

DEC VAX 11/780 (VMS/UNIX)
- 4 Meoabytes Main Memory
-1.5 Gigabytes On-Line Disk

• Texas Instruments Explorer Systems

• Personal Computers
- Tandy Radio Shack
- Macintosh
- Apple II Plus

• Graphics Equipment
- VT 240 Tektronics Compatible Display
- VS 11 !Vax Graphics System
- AED 767

• Software Tools Available or Planned
- UNIX - HOS USE.IT - SDDL
-SYSREM -RXVP80 -STRUCTURES
- PUI - Modula-2 - Smalltalk
-PROLOG -COBOL74 -FORTRAN 77
- LISP - Pascal - Ada

Figure 5. Facilities Available to MSDD Students.

The Near Future

During the Fall semester, 1985, the authors conducted a brief survey of
selected students associated with the MSDD program. For complete
ness, and in an effort to gauge the success of the revised curriculum,
several students were polled who had graduated under the old cur
riculum and several who were currently enrolled under the new cur
riculum. The objective of the survey was to ascertain whether the ap
proach and content of the MSDD curriculum were meeting the needs of
those students working in industrial software development environ
ments. Conclusions drawn from the data supplied by these students are
discussed in the following section. A copy of the questionnaire used in
the survey can be found in Appendix III.

Student Survey

Of the students surveyed, approximately seventy percent completed
and returned their questionnaires. Of these, it was learned that ap-

www.manaraa.com

Comer and Rodjak 159

proximately seventy-five percent of the respondents were actively
employed in the development of business-oriented software systems.
Various application areas included financial systems, cost accounting,
personnel record systems, inventory control, and fleet expense and
maintenance systems. The remaining twenty-five percent were involved
in various engineering software development efforts such as
aircraft/pilot trainers, automatic test equipment, and real-time radar
simulations. With regard to the respondent's degree of responsibility
within these project areas, it was learned that the data was heavily
skewed toward higher level job classifications. In particular, one-quarter
of the respondents specified their job classification as managers of
software development. One-third indicated a job title of project leader,
and the remaining indicated job classifications such as chief program
mer, systems analyst, or software designer.

The following comments briefly summarize the more significant results
of the curriculum survey:

1. The traditional software life cycle "waterfall model" (that is,
serial, overlapping phases of planning, requirements,
design, coding, testing, and maintenance) is very definitely
applicable to the vast majority of both business and en
gineering software development efforts.

2. The course material currently required for successful
completion of the MSDD degree is unquestionably
relevant to the industrial work environment.

3. Students are generally able to apply the methods and
techniques which they have been taught. However, in
many cases, established management directives have
acted to place limitations on the introduction of new
methodologies. For example, while a chief programmer
might easily be able to apply design methodologies,
coding standards and guidelines, he or she might find dif
ficulty in influencing the adoption of a new software cost
estimating approach if there exists little management sup
port for such a tool.

4. There is not a large number or variety of software tools
currently in use. Text editors and language translators
were the most frequently mentioned tools that are
generally available in almost every development environ
ment. It is perhaps not surprising that the use and

www.manaraa.com

160 A New Perspective on SE Education at TeU

availability of software tools was most frequently men
tioned by students involved with the development of busi
ness software applications. Problems frequently cited in
connection with engineering software tools included that
they were simply "too specialized" or that they "required
too much labor to use them."

5. There were several recommendations made for additional
technical courses and new areas of instruction. The most
frequently requested new courses included:

• Artificial Intelligence

• Rapid Prototyping

• Communications and Networking

• Technical Personnel Management and Motivation

In addition, several new areas of instruction were re
quested. Included were topics su~h as: personal com
puter applications, programming environments, and hands
on experience with software tools.

Finally, the majority of the students responding indicated a great deal of
satisfaction with the revised curriculum. It was felt that it was especially
beneficial to have instructors who had significant industrial software
development experience. In general, the students indicated that the
MSDD curriculum provided substantial preparation for their particular
work environment.

Departmental Response

With the changes instituted in 1981, the MSDD program was substan
tially improved. Much of the overlap that existed between courses was
eliminated, increased rigor was introduced into the program, and several
new, more substantive courses were added to the curriculum. However,
in an evolving and maturing discipline such as software engineering,
change is inevitable. If the program is to remain current and applicable,
new alternatives must be considered and new courses must be con
tinually introduced into the curriculum.

In response to recent student requests, a course in artificial intelligence
will be offered in the Spring, 1986, semester. Additional courses, as
suggested by students, will be offered when appropriate faculty can be

www.manaraa.com

Comer and Rodjak 161

identified to teach such courses. Obviously, the introduction of new
courses into any curriculum is largely a function of the availability of
teaching expertise. However, additional software and/or hardware
resources to use in support of these new courses must also be avail
able. Consequently, the decision to teach or not to teach a new course,
is almost always driven by economics. Certainly, the situation at TCU is
no different from that found in many of the nation's universities.

The department is currently preparing the necessary paperwork re
quired to become an affiliate with the Software Engineering Institute
(SEI). Such an affiliation would pay great dividends, in that new ideas
and teaching strategies may be directly derived from the Institute itself.
With state of the art input being obtained from SEI, TCU's program, or
any other, should find itself in an enhanced position to remain relevant.

Summary

The Master's of Software Design and Development curriculum at Texas
Christian University provides students with the managerial, technical,
and communicative skills that are required for successful software
development and maintenance in all software environments. This cur
riculum, which has been in existence since 1978, has evolved over time

and has been structured to be flexible to the changing needs of the
software engineering profession. A recent student survey has con
firmed that the program's approach, which is based upon the waterfall
model of the software life cycle phases, and course content are unques
tionably applicable to the industrial software development setting. As
faculty, hardware, and software resources become available, new
courses will be added to the curriculum in order to ensure that it remains
relevant. The objective of the MSDD curriculum at Texas- Cffrisifan
University is now, and always- has been, to provide a program of instruc

tion that is adaptable to the changing needs of the professional software
developer. Clearly, this program is helping to fill the critical need for
skilled software engineers.

www.manaraa.com

162 A New Perspective on SE Education at TCU

Acknowledgment

The authors wish to thank Dr. Robert R. Wier and Dr. David F. Addis for
reading this paper and offering helpful comments concerning its con
tents.

APPENDIX I: The Original Curriculum

Requirements for Admission: Enrollment is limited. Admission to the
program will be by application to AddRan College and approval by a
Software Design and Development Admissions Committee. Both
academic background and professional experience will be considered.
It is expected that individuals with the following minimum qualifications
will fill available spaces: 1) Admission to graduate study in Add Ran
College and either 2) B.S. in Computer Science and some software
development experience, or 3) substantial job related experience in
software development.

Degree Requirements: A 40-semester hour program with either 1) 34
hours of Software Design and Development (SDD 5143, 5193, 6104,
6113, 6123, 6133, 6142, 6153, 6163, 6193, 7113), plus 6 hours of ap
proved electives or 2) 30 hours of Software Design and Development
(without SDD 6104) plus 10 hours of electives. Both programs include
an oral examination.

SDD 5143 - Introduction to Software Design and Development.
Prerequisites: Admission to the Software Design and Development
Program. May be taken by seniors majoring in computer science on a
space available basis. Techniques of software design and develop
ment. The software life cycle. Methods for requirements definition, sys
tem specification, and design. Design concepts and methods. Im
proved programming methodologies. Methods for testing, validation,
and quality control. Documentation. Software economics. Manage
ment of programming projects. Case histories. Organization of presen
tation materials. Preparation of graphics for presentation. Maximizing
the use of multimedia. Writing style for software documents. Develop
ment documents - requirements, specifications, design, and implemen
tation. Technical documentation. User documentation, automated aids.
Reports. Proposals.

www.manaraa.com

Comer and Rodjak 163

SOD 5193 - Communication Techniques In the Software Design and
Development Environment. Prerequisites: SDD 6113. Organization
of presentation materials. Preparation of graphics for presentation.
Maximizing the use of multimedia. Writing style for software documents.
Development documents - requirements, specifications, design, and
implementation. Technical documentation. User cfbcumentation,
automated aids. Reports. Proposals.

SOD 6104 - Overview of Computer Science. Prerequisites: SDD
5143. Technical overview of the software design and development en
vironment. Computer systems architecture. Software structures such
as compilers, operating systems, assemblers, file systems, and data
management systems. Hardware/software tradeoffs. Storage manage
ment. System support packages.

SOD 6113 - Methodologies of Software Development. Prerequisites:
SDD 6104 OJ permission. Structured programming. Modularization.
Top-down development. Levels of abstraction. Stepwise refinement.
Hardware, software, and user tradeoffs.

SOD 6123 - Requirements and Specifications for Software. Prere
quisites: SDD 6113. Requirements analysis. Techniques for represent
ing requirements. Specification development techniques. Specification
languages. Automated aids. Laboratory will consist of case studies.

SOD 6133 - Software Design. Prerequisites: SDD 6123. Design
process. Major design methods - composite/structured design, data
structure driven deSign, structural analysis, and others. Evaluation of
alternate designs. Automated design aids. Design documentation.

SOD 6142 - Software Design Laboratory. Prerequisites: Should be
taken in parallel with SOD 6133. Case study designs using design
methods contained in SDD 6133.

SOD 6153 - Management of Software Development. Prerequisites:
SDD 5143. Organization context of software development. Analysis of
life cycle costs. Scheduling and budgeting techniques. Specification
and control of standards for products, processes, and equipment. Per
sonnel development and utilization. Team techniques.

www.manaraa.com

164 A New Perspective on SE Education at leU

SOD 6163 - Economics of Software Development. Prerequisites:
SDD 6153. Fundamentals of economics. Distribution of costs through
software life cycle. Relative hardware/software costs. Economic
analysis for decision making. Economic feasibility studies.

SOD 6193 - Effective Participation In Small Task Oriented Groups.
Prerequisites: SDD 5143. Recognizing and supplying actions neces
sary for task oriented groups to achieve their objectives. Group main
tenance roles. Group orienting roles. Task directed roles. Evaluative
roles. Closure and action items. Systematic approaches to problem
solving. Problem definition. Developing the solution domain. Means
end analysis. Provisions for feedback. Delineation of subproblems. As
signment of priorities. Time lines.

SOD 7113 - Software Implementation. Prerequisites: SDD 6133 and
SDD 6142. Transfer of design to code. Testing techniques. Validation.
Verification. Certification. Security. Case studies.

APPENDIX II: The Revised Curriculum

The Master of Software Design and Development program offers a
professional graduate curriculum in the software development discipline.
Software Design and Development requires that professional expertise,
technical skill, and managerial ability be focused on the deSign, im
plementation, and maintenance of reliable and cost-effective software
systems.

Requirements for Admission
1. Admission to graduate study in AddRan College, and
2. Appropriate level of technical competence demonstrated

by an appropriate transcript or resume, and
3. Two or more years of experience in software systems

development, and
4. Knowledge of assembler language programming (e.g.

CoSc 1603), and
5. Programming skill in using a block structured program

ming language such as Pascal, PUI, Ada or Algol, and
6. An undergraduate course in data structures or its equiv

alent.

www.manaraa.com

Comer and Rodjak 165

A student may resolve requirements (5) and (6) by successfully com
pleting SOD 6104, if items (1) through (4) are otherwise satisfactory for
admission.

Degree Requirements: A 36-semester hour program (40 hours if SOD
6104 is necessary) with at least 27 hours of SOD courses and 9 hours
of electives (which must be approved by the Computer Science Depart
ment in advance of enrolling). SOD 6104 is required of students enter
ing the SOD program without qualifications (5) and (6) listed above.

The following courses are required of all students to complete the de
gree: SOD 5143, SOD 6113, SOD 6123, SOD 6153, SOD 6163, SOD
6173, SOD 6183, SOD 7113, and SOD 7123. Prior to scheduling the
final oral, each student must have submitted a paper, based on current
coursework or related areas, to an appropriate journal for publication.
Each student must pass a final comprehensive oral during the last
semester of coursework.

SOD 5143 - IntrodUction to Software Design and Development.
Prerequisites: Admission to the SOD program. May be taken with SOD
6104. An introduction to software design and development, oriented
towards the software development life cycle phases. The need for dis
cipline in software development is established, using software cost
relationships and case studies. An overview of techniques for systems
analysis, configuration management, software quality assurance, and
maintenance activities provides insight to all activities required for suc
cessful software development. An overview of communication skills,
economics of software, and project management is also included. (Text
used: R. S. Pressman, Software Engineering: A Practitioner's

Approach, McGraw-Hili, 1982).

www.manaraa.com

166 A New Perspective on SE Education at TeU

SOD 6013 - Ada Design and Development. Prerequisites: SDD 6113.
The impact of the new DOD standard language on the design and
development of software systems will be studied. Particular attention
will be given to the development of software systems in Ada. The evolu
tion of Ada, and its standardization and current status will be studied.
Ada language data types, program structuring, the Ada support environ
ment (APSE), and systems programming in Ada will be emphasized,
including program development. (Text used: G. Booch, Software En
gineering with Ada, Benjamin/Cummings, 1983).

SDD 6023 - Advanced Topics In Systems Software. Prerequisites:
Permission of instructor and SDD 6113, SDD 6153, and SDD 6173.
Advanced topics of current interest in systems software, such as: Net
working and Distributed Systems, Performance Evaluation, Object
Oriented Architecture (e.g., iAPX432), etc. Students will study current
literature. (May be repeated for credit when topic changes.)

SDD 6033 - Computer Facilities Management. Prerequisites: SDD
5143. A comprehensive study of problems associated with manage
ment of data processing and computer facilities. Particular emphasis is
placed on problems of cost effectiveness, machine configuration, per
sonnel and human factors, security, systems planning, facilities require
ments, and office automation.

SOD 6043 - Software Quality Assurance and Metrics. Prerequisite:
SDD 6123. The impact of software quality assurance upon the software
life cycle development phases will be studied. Particular software test
ing philosophies such as top-down, bottom-up, and sandwich will be
compared. Software metrics for reliability, flexibility, maintainability, per
formance, resources, and structure will be discussed, as well as
methodologies for the collection of software metric data. Finally,
software metrics will be linked to the requirements of software quality
assurance and reliability. A summary of industry-wide software metric
data will be presented. (Texts used: T. Gilb, Software Metrics,
Winthrop, 1977; B. Beizer, Software System Testing and Quality
Assurance, Reinholt, 1984).

www.manaraa.com

Comer and Rodjak 167

SDD 6053 - Security and Privacy. Prerequisites: SDD 6183. This
course covers the technical, legal and ethical aspects of security and
privacy of information. Technical issues covered include encryption
techniques, database security, and implementation of protection
schemes in operating systems and programming languages.

SDD 6104 - Programming Structures. Prerequisites: Admission to the
MSDD program. Introduction to block structure languages including
scope rules, recursion, pOinter variables, and control constructs. Study
of data structures including arrays, stacks, linked lists, trees, graphs,
and files. Examples are selected from operating systems, compilers,
and systems programming. A number of programming aSSignments in
Pascal, C, or Ada will be made. (Text used: G.M. Schneider and S.C.
Bruell, Advanced Programming and Problem Solving with Pascal, John
Wiley & Sons, 1981.)

SDD 6113 - Modern Software Requirements and Design
Techniques. Prerequisites: SDD 5143. A comprehensive study in
state-of-the-art techniques for design and development of software sys
tems. Automated tools for requirements, deSign, and documentation
are used in a comparative study of functional decomposition, structured
analysis, PSUPSA, Higher Order Software, SAMM, SREM and rapid
prototyping techniques. Emphasis is on contrasting the application of
different methods for a selected methodology. Appropriate
methodologies will be applied to sample problems. Structured deSign,
Petri-nets and Warnier Orr methods will be compared to distinguish ap
plications of each methodology. (Texts used: K.T. Orr, Structured Re

quirements Definitions, Orr & Associates, 1981; L.J. Peters, Software

DeSign Methods & Techniques, YOURDON Press, 1981.)

SDD 6123 - Applied DeSign, Programming, and Testing
Techniques. Prerequisites: SDD 6113. Emphasis on object oriented
design, Jackson methodology, levels of abstraction, top-down, bottom
up, sandwich, Nassi-Schneiderman, Hamilton-Zeldin and SDDL
methods of design. Software quality assurance and testing methods to
measure cohesiveness and robustness are studied along with static and
dynamic testing concepts. Automated testing methods and software

www.manaraa.com

168 A New Perspective on SE Education at TeU

maintenance considerations with respect to reduction of life cycle cost

are also studied. (Texts used: G.J. Myers, The Art of Software
Testing, John Wiley & Sons, 1979; G. Parikh and N. Zvegintzov, Tutorial
on Software Maintenance, IEEE, 1983.)

SOD 6153 - Management of Software Development. Prerequisites:

SOD 5143. A complete methodology for managing the planning,

design, construction, evaluation, documentation distribution, and main

tenance of software products with emphasis on top-down design,

management by objective, configuration management and motivation.

Human factors related to quality, productivity metrics, chief programmer

teams, ego less programming, democratic teams, structured

walkthroughs and formal inspections are investigated. Automated

project management tools are used to enhance and simulate a real

world environment for project management. (Texts used: T. DeMarco,

Controlling Software Projects, YOURDON Press, 1982; R.C Gunther,

Management Methodology for Software Product Engineering, Wiley In

terscience, 1978.)

SOD 6163 - Economics of Software Development. Prerequisites:

SOD 6153. An in-depth study of software life cycle cost distribution with

major emphasis of Boehm's Software Economics model COCOMO; the

parametric models PRICE S, JENSEN, and SLIM are also covered.

The work of Aron, Brooks, Baker, Wolverton, Parr and Putnam will also

be analyzed to cover the full spectrum of software economics. In

dividual projects will include application of PRICE SISLIM automated

parametric models to industry problems. (Text used: B.W. Boehm,

Software Engineering Economics, Prentice-Hall, 1981.)

SOD 6173 - Computer Systems Architecture. Prerequisites: SOD

5143 and SOD 6104. The logical organization, conceptual structure,

and functional behavior of computers are studied from the user view

point. First, the CPU, 1/0 devices, and memory components of a fun

damental uniprocessor are presented. Secondly, a multiprocessor con

figuration is established using the fundamental uniprocessor as a build

ing block. Distributed processing and commercially implemented net

works such as DECnet, Ethernet, US net, SNA, and the Open Systems

www.manaraa.com

Comer and Rodjak 169

Interconnection Model established by ISO will be compared. Telecom
munications will be addressed. Finally, the criteria for evaluation, selec
tion, and performance measurement of a computer system that is part of
a larger product will be studied. The topics include the advantages and
disadvantages of uniprocessor and multiprocessor configurations,
reliability, maintainability, software support, throughput analysis, and
rapid prototype modeling. (Text used: D.l. Kuck, Structure of Com

puters and Computations, Wiley & Sons, 1978.)

SDD 6183 - Database and Information Management Systems.
Prerequisites: SDD 6173. The requirements analysis and design
criteria of database and information management systems will be
studied. The impacts of the operational environment, quality control,
security, human/system interface requirements, system specification
and design will be investigated. Hierarchical and relational databases
will be studied, along with commercially available databases and infor
mation management systems. Design techniques for optimization, ap

plication to large databases, and restructuring existing databases will be
discussed. The design review methodologies of MCAUTO and IBM will
be considered. (Texts used: D.M. Kroenke, DATABASE PROCESS

ING: Fundamentals, Design, Implementation, SRA, 1983; W.H. Inmon,
Effective Data Base Design, Prentice-Hall, 1981.)

SDD 6193 - Effective Communication in Small Groups. Prere
quisites: SDD 5143. Technical communication requires the exchange
of information in an accurate, concise, unambiguous, and timely man
ner. In software development, technical communication takes a variety
of forms: interaction with existing and prospective customers, oral and
written progress reports to management, memos and presentations to
colleagues, proposals, requirements documents, specifications, design
documentation, code documentation, formal and informal project

reviews, test plans, test results, user's manuals, training sessions; and
maintenance reports must all be prepared and delivered in the course of
a software life cycle. (Text used: R.W. Griffin, Task Design: An Integra

tive Approach, Scott-Foresman, 1982.)

www.manaraa.com

170 A New Perspective on SE Education at TeU

SOD 7113 - Software Implementation Project I. Prerequisites: SDD
6123, SDD 6153, and SDD 6183. This course is the first of a con
tiguous two-semester sequence which applies the techniques of modern
software development to actual problem solutions. Group projects will
be assigned, based in part on the student's professional background.
The projects will require the development of operational software, em
phasizing group development processes to accomplish feasibility
analYSiS, costing, planning, requirements specifications and preliminary
design of the assigned project.

SOD 7123 - Software Implementation Project II. Prerequisites: SDD
7113. Preliminary design of the project assigned in SDD 7113 is
reviewed and the detailed design is executed. A critical design review is
performed and the implementation, testing and documentation is com
pleted as a group process. Acceptance testing is accomplished to en
sure that the software satisfies the user specification requirements.

APPENDIX III: The Student Questionnaire

Part A: You and Your Work
1. Your name: _________________ _

2. Your mailing address: ______________ _
3. Day telephone number: _____________ _

4. Night telephone number:, _____________ _

5. Your current employer: _____________ _

6. Approximately how many software professionals are at
your employer's site? ______________ _

7. Your job title: _________________ _

8. Briefly describe your software application.

9. What is your particular involvement with this software ap
plication?

Part 8: THE TCU MSDD CURRICULUM
1. Is the traditional software life cycle "waterfall model" ap

plicable to your work? In what respect?

2. Has the course material you have learned been relevant
to your work?

3. Are you able to apply the techniques and methods of
software engineering that you have learned to your work?

www.manaraa.com

Comer and Rodjak

4. What automated software tools do you regularly use?
What is your evaluation of these tools?

5. What specific changes would you recommend in the con
tent of the MSDD courses?

6. What new technologies do you think should be included in
the MSDD course of study?

7. Please describe your overall opinion of the MSDD cur
riculum with respect to the "real-world" of software
development.

171

www.manaraa.com

The Software Engineering First Degree
at Imperial College, London

M.M. Lehman
Imperial College of Science and Technology

Abstract. This brief paper, with its appendix, provides a broad view
of the four year Master of Engineering course at Imperial College. A
more complete description, including fuller syllabi will, it is expected,
be available at the workshop.

British University Course Structure

Undergraduate courses in British universities differ from those in the
United States in a number of ways. Two such differences in particular
must be brought to the attention of participants at the Software En
gineering Education Workshop.

First, in the great majority of British universities, degree courses are
largely predefined. Students will have, at most, to select only a small
number of options; choices that permit a degree of specialization within
the selected subject area - computing science or software engineering
in the case of this department. Thus while a student must pass ex
aminations in the courses that he or she attends, the concepts of major
and minor subjects with independent course "credits" that are summed,
does not apply.

The second major difference arises from the fact that British first degree
courses, awarding a Bachelor degree, are generally of three year dura
tion. Some years ago, however, the engineering community realized
that the length of such courses did not allow time to provide both the
breadth and depth of knowledge and understanding required by an en
gineering executive in the world of today. Four year courses, termed
"Dainton" courses, were, therefore, introduced to permit the exposure of
the potentially, most capable students to management and related
topics as well as to a period of industrial experience.

www.manaraa.com

lehman 173

Four Year Advanced Engineering Course

More recently, following publication of the Finniston report, [33] four year
courses have been set up in engineering departments at selected British
universities. These courses include a significant amount of advanced
technical and management material. The treatment of topics, par
ticularly in the final year, is similarly advanced.

As a reflection of the standard achieved (and also to make them com
petitive with an alternative educational route comprising a three year
bachelor's degree course followed by a one year specialist master's
course), the four year courses now generally award a master's degree
(M. Eng) as a first degree. Detailed regulations differ somewhat be
tween universities. Some will permit the switching of qualified students
from the three to the four year course (or vice versa) at the end of the
first or second year. Optional completion of a four year course at the
end of three years with the award of a bachelor'S degree is, however, in
general not permitted.

Four year courses are, generally, more demanding than the three year
courses; entry conditions are, therefore, more stringent and are clearly
intended to attract the best students. At the output end of the higher
education process, graduates may be expected to advance rapidly once
they enter industry, and ultimately reach senior management or execu
tive positions, by virtue of both greater ability and of knowledge, under
standing and experience gained.

The Imperial College Software Engineering Course

Imperial College has been running an undergraduate course awarding a
BSc (Eng) degree in computing science for some twelve years. The
annual intake is about 100 students. Some years ago it was decided
that developments in software engineering and the importance of this
topic in the world of tomorrow suggested a need for a specialist course
awarding a software engineering degree. Moreover, the wealth of
material, much of it advanced, needing to be included, suggested that
such a course should take the form of one of the new four year courses.

www.manaraa.com

174 The SE First Degree at Imperial College, London

Such a course is now running - the first intake of 10 students in their
second year and the second intake of 16 students in their first year. The
first students will be graduating in 1988.

The first two years of this four year course, which will award a master's
degree in software engineering, are identical to the first two years of the
computing science course, making a switch at the end of that time pos
sible though not, in general, encouraged. That is, all the Department of
Computing's undergraduates go through the first two years together.
The divergence starts in the third year, although some individual
courses are still shared, being offered to three year Computing Science
students as options.

The Course Structure
The appendix provides outlines of the course structure and content.
Detailed syllabi of the individual lecture series are available from the
author.

From the description in the appendix it will also be seen that students
spend a total of six months gaining practical experience in industry
which, while considered too little, appears to provide the best com
promise, under existing time and other constraints, between provision of
material considered essential, additional material which is, at the very
least, deSirable, and practical experience of the industrial software
development environment and of the application of what has been
studied.

The descriptions included in the appendix do no more than provide a top
level indication of the topics included in the course. A lecture series, as
identified by title, may range from, say 11 to 44 hours and will be sup
ported by half that number of tutorial hours. Additional time is set aside
for laboratories and projects. More precise syllabi, down to three levels
of detail, are available, although in the final analysis the actual content
of a course will be decided by the lecturer. Detailed syllabi, even if not
precise in their descriptions of ultimate course content, do permit better
judgement about the amount of time to be allocated to each lecture and
assist the process and control of lecture coordination and the avoidance
of overlap.

www.manaraa.com

Lehman 175

The amount of material one would like to include in the course greatly
exceeds the time available, in terms of both potential breadth and depth.
It is believed that the material presented here represents an acceptable
starting point for a new academic discipline. It is certain that the course
will change and evolve as a consequence both of experience and of
evolution of the discipline.

Imperial Software Technology Ltd.

In connection with the provision of industrial exposure and experience, it
is appropriate to mention Imperial Software Technology Ltd, (1ST), a
company set up in 1982 by the College in partnership with the National
Westminster Bank PLC, the Plessey Company PLC and PA Inter
national. 1ST is already achieving a leadership position in the program
ming environment and software tools industry. Its conception arose, at
least in part, from the perceived need by the software engineering
course designers to provide a realistic and advanced industrial software
technology working environment providing a base for realistic student
industrial exposure and experience.

To fulfill this role effectively, such an organization must be an independ
ent, technically and commercially successful organization with clients,

products and services in the software technology field. Only then can it
provide facilities, support and the technical and managerial environment
to permit student experience and exposure that reflects the real world of
software development. Only in this way can it convincingly demonstrate
to the observing students (and to others) the industrial and commercially
successful application of the methods, techniques and tools studied in
their courses.

The role of the company in software engineering education was per
ceived to be somewhat analogous, though in detail quite different, from
the role of teaching hospitals in the education of medical students.
Whether this will be achieved in practice and how it will all work must
await actual experience. This will commence with the entry of the first
students to industry, 1ST and elsewhere, in the spring of 1987.

www.manaraa.com

176 The SE First Degree at Imperial College, London

The sad fact is that software engineering today is still largely pragmatic.
Its relevance appears only in projects of such dimension that they can
not be adequately reproduced in an academic environment. To produce
graduates of real immediate value to industry and who can transfer ad
vanced software technology to industry requires universities to provide
knowledge, understanding and insight into the technology, its math
ematical foundations, theory, processes, methods and tools in the con
text of an industrial, profit seeking, resource constrained, client demand
ing, environment. Academic courses in software engineering must be
complemented by open-eyed experience. It is believed that involvement
that provides this can be achieved and, at the same time, while
profitable to the student, the employer and the employer's clients.
Though 1ST has a wider mission and charter it will also serve an an
instrument to prove this.

Summary

This brief paper, with its appendix, serves as an introduction to the four
year master's degree course in Software Engineering at Imperial Col
lege. A more complete description, including fuller syllabi is available.
To obtain a copy please write to the author at the address supplied in
the list of participants.

www.manaraa.com

Lehman 177

Appendix

Four Year Course in Software Engineering

Course Structure

Year 1, 2:

Year 3

Common with Years 1,2 of BSc (Eng) Course
summary follows

Terms 1,2: Courses as listed, associated Lab Work
and Group Project

Term 3:

Students take Compulsory Courses 1

totaling x modules

and (9 - x) Optional Courses2

each of 1 module3

Industrial Placement (April-September)
(approximately 6 months)

Assessment by course work and tests only.

Year 4: Terms 1, 2: Courses as listed

Students take Compulsory Courses2

totaling y modules3

and (9 - y) Optional Courses2

each of 1 module3

Terms 2, 3: Individual Project - may be industry based
Assessment by course work, laboratory work and examinations at the
beginning of the summer term.

A Module comprises 22 hours of lectures, together with associated
tutorials.3

Courses are listed on the attached sheets. Over two years, the selec

tion of Optional Courses must include at least one course from each of
the four subject areas (Technologies, Systems, Applications,

Environment) .

1 Classification as Compulsory or Optional not yet finalized but 3.5. x,y .5. 6

www.manaraa.com

178 The SE First Degree at Imperial College, London

Three and Four Year Courses

Part I Courses

110: Computing Systems I

120: Programming

140: Theory of Computing I

141: Logic

145: Mathematical Methods

161: Integrated Laboratory

Part II Courses

210: Computing Systems II

220: Advanced Program Design

221: Language Processors

230: Computing Applications

240: Theory of Computing II

245: Statistics

261 : Integrated Laboratory

Software Engineering Degree: Part III Courses

Compulsory Courses: Provisionally 66 hours lectures

SE311 Software Engineering Process

SE312 Calculus of Software Development

SE313 Database Technology

SE314 Introduction to Macro Economics and Financial Management

SE315 Introduction to Management

www.manaraa.com

Lehman

Provisionally Optional Courses:2 Each one, 22 hours lectures

Technologies

SE321 Functional Programming Technology I

SE322 Artificial Intelligence Technology

SE323 Compiler Technology

Systems

SE331 Computer Networks

SE332 Object Oriented Architecture

SE333 Interface and Microprocessor Technology

SE334 Performance Analysis of Computer Systems

Applicatio'ns

SE341 Graphics

SE342 Silicon Compilation

SE343 Applied Mathematics

Environment

SE351 Industrial Sociology

SE352 Government Law and Industry

SE353 Humanities

2Up to three of the courses classified here as Optional may become Compulsory

179

www.manaraa.com

180 The SE First Degree at Imperial College, London

Software Engineering Degree: Part IV Courses

Title

Compulsory Courses: Provisionally 66 hours lectures

SE412 Methodology of Software Development

SE413 Language Definition and Design

SE414 Programming Support Environments

SE415 Standards, Ethical and Legal Considerations

Provisionally Optional Courses:3 Each one, 22 hours lectures

Technologies

SE421 Advanced Logic

SE422 Theorem Proving

SE423 Concurrent Computation

SE424 Human-Computer Interaction

SE425 Expert Systems Technology

SE426 Functional Programming Technology II

Systems

SE431 Advanced Operating Systems

SE432 Parallel Architecture

SE433 Distributed Systems

SE434 VLSI

3Up to three of the courses classified here as Optional may become Compulsory

www.manaraa.com

Lehman

Applications

SE441 Robotics

SE442 Computing in Engineering

SE443 Natural Language Processing

Environment

SE451 Micro-Economic Concepts

SE452 Industrial Relations

SE453 Innovation and Technical Change

SE454 Humanities

181

www.manaraa.com

The Master of Software Engineering Program
at Seattle University after Six Years

Everald E. Mills
Seattle University

Abstract. In 1977-78 Seattle University initiated a series of discus
sions with representatives from local business and industry. In those
discussions, software engineering emerged as a critical area of need
for specialized educational programs. As a result of this cooperative
effort, Seattle University established the Master of Software Engineer
ing [MSE] program. This program is now in its seventh year of opera
tion and has produced four graduating classes. Rather than preparing
students to enter the software engineering profession, the MSE
program is a way for those already engaged in software engineering
to improve their educational background and technical skills. The
program is intended to cover both the technical and management
aspects of software engineering. This paper discusses the
philosophy, objectives, and implementation of the program.

Introduction
It has now been nearly twenty years since the first use of the term
software engineering [71). These first two decades have seen much
activity and even some progress in this exciting new discipline. During
this time, a generally acceptable list of activities and responsibilities in
volved in software engineering seems to have emerged. Still, a single,
precise and universally acceptable definition of software engineering
has not.

This is clear from even a brief perusal of current classified advertise
ments, which indicate that many jobs in the software development world
are being labeled as software engineering positions or activities, and
that employers are eager to recruit software engineers. However, the
detailed specifications for these various positions point up the some
times significant differences in interpretation of the term software en
gineer.

The inability to establish a precise, universally acceptable definition of
software engineering has especially hampered the development of
educational programs in this area [63]. Thus, even though software en
gineering has now long been identified as a complex activity for which

www.manaraa.com

Mills 183

some sort of specialized educational program is necessary, few such
programs have been developed. One notable exception is the graduate
program in software engineering at Seattle University, Seattle,

Washington.

Seattle University is an independent urban university committed to the
concept of providing rigorous professional educational programs, but
within a sound liberal arts background. In 1977-78, the University in
itiated a series of discussions with representatives from local business
and industry. In those discussions, software engineering emerged as a
critical area of need for specialized educational programs. Leading
software professionals were invited to assist in the development of such
a program at Seattle University. Larry Peters and Leon Stucki, both
employees of the Boeing Company at that time, were heavily involved in
this effort.

The result of this cooperative effort was the establishment of the Master
of Software Engineering[MSE] program at Seattle University. As
originally established, the curriculum was similar to that described by

Peters and Stucki in their 1978 ACM Conference paper [2,3]. The cur
riculum has subsequently been modified slightly, and is described in
more detail below. This program is now in its seventh year of operation
and has produced four graduating classes, starting in 1982. In the fol
lowing, the philosophy, objectives, and implementation of the program

are discussed.

Philosophy and Objectives of the MSE Program

The Seattle University MSE program is described as one specific
response to the need for educational programs in software engineering.
It is not necessarily presented as a model curriculum but rather as a
response to the particular needs of the computing community in which it
resides.

First of all, the Seattle University program addresses itself to profes
sionals working in software development activities. This choice of
audience for the program has two important immediate consequences,
as follows.

www.manaraa.com

184 MSE Program at Seattle University after Six Years

1. Such students are typically currently employed, and wish
to continue working while pursuing a graduate degree.

2. Classes for such students must be held in the evenings to
avoid conflicts with work schedules.

Obviously, other audiences, such as more conventional undergraduate
students [BSE degree], or recent graduates with no required work ex
perience, could have been targeted. At the time the MSE program was
established, however, the need for additional educational training for
those already involved in software engineering was identified as an ex
tremely pressing one, and it was selected as the main thrust of the Seat
tle University program.

Secondly, having established the professional software experience re
quirement, it is probably best to regard the MSE program not as a
preparation to enter the software engineering profession, but rather as a
way for those already engaged in software engineering activities to im
prove their educational background and technical skills. The prior ex
perience required of all MSE students must include extensive program
ming experience, involving at least some use of contemporary lan
guages such as Pascal as well as involvement in other phases of the
software development life cycle.

It has often been noted that software engineering involves an extremely
broad range of activities and responsibilities. These activities and
responsibilities involve both technical and management issues as well
as complex combinations of both. The goal of the MSE program is to
prepare its graduates to cope more effectively with this broad range of
activities and responsibilities. Specifically, the graduates should be able
to:

1. Engage effectively and productively in the various phases of the
software development life cycle, including requirements specification,
analysis, deSign, implementation, testing and maintenance.

2. Understand, select among, and use state-of-the-art methodologies
and techniques.

www.manaraa.com

Mills 185

3. Manage effectively a project of non-trivial size (at least 4- 6 people
over 1-2 years)

4. Communicate effectively, both orally and in writing, with various
parties involved in the typical software project: users, analysts, program

mers, managers, etc.

5. Recognize, learn, and evaluate new concepts, techniques, and
methodologies for possible use in future projects.

As indicated previously, the MSE program is intended to cover both the
technical and management aspects of software engineering. Although
some students will prefer the management aspects over the technical,
or vice versa, a minimum level of expertise in both areas is essential for
all students. Beyond this level, students may take elective courses
which emphasize either the technical or management aspects.

The MSE Curriculum

Basis and Required Background

Working software professionals have been identified as the target group
for the MSE program. Beyond that, the program is intended for the
members of this group most capable of benefiting from such a graduate
program and of making continued contributions to the field after comple
tion of the degree. Thus, the requirements for application to the MSE
program can be summarized as follows:

1. A minimum of two years professional software experience.
Extensive use of and/or experience with software does not
satisfy this requirement. The work experience must have
had the production of software as its primary goal.

2. A baccalaureate degree in a quantitative discipline. In this
requirement, computer science is recognized as the es
sential scientific basis for software engineering and is the
preferred degree background. However, many practicing
professionals do not have computer science degrees for
various reasons. Degrees in other disciplines, such as the
various areas of engineering, the sciences and math
ematics are acceptable. In any case, a required minimum
of expertise in computer science is insured via the foun
dation courses described below.

www.manaraa.com

186 MSE Program at Seattle University after Six Years

3. Graduate Record Exam (GRE) or Graduate Management
Admissions Test (GMAT) Scores. Students must
demonstrate reasonable probability of success in the
graduate program via satisfactory scores in one of these
standard exams.

MSE Courses

In the following, the MSE curriculum is described as it currently exists.
Of course, individual courses have undergone the usual evolutionary
process, and the curriculum as a whole has been recently revised.
Nevertheless, the basic format is similar to that proposed by Peters and
Stucki [92], as well as by others such as Freeman and Wasserman [41].

The MSE coursework can be classified into the following areas, each of
which is discussed in more detail below:

Foundation Courses

ESW 500.

ESW 501.

Information Structures and Algorithms

Computer Systems Principles

Core Courses (24 credits)

ESW 508. Technical Communication

ESW510. Software Systems Analysis

ESW 512. System Design Methodology

ESW514. Programming Methodology

ESW 516. Software Quality Assurance

ESW 518. Software Metrics

ESW 531. Software Project Management

ESW543. Formal Methods

www.manaraa.com

Mills

Elective Courses (12 credits)

ESW 533.

ESW541.

ESW 551.

ESW553.

ESW 560.

ESW 562.

ESW564.

ESW 566.

BUS 507.

BUS 580.

System Procurement Contract Acquisition and
Administration

Database Systems

Distributed Computing

Artificial Intelligence

Human Factors in Computing

Data Security and Privacy

Computer Graphics

Real Time Systems

Organization Behavior

Organization Structure and Theory

BUS 582. Decision Theory
... and other appropriate courses from the MBA program.

Software Engineering Project (9 credits)

187

ESW 585,586 and 587. Software Engineering Project 1, 2, 3.

A. Foundation Courses

Computer science is recognized as the basic underlying science for
software engineering. Thus, students must demonstrate a minimum
competency at least equivalent to the courses ESW 500 and ESW 501.
If students are admitted without this background, they must complete
these courses. ESW 500 is essentially a junior-senior level data struc
tures and analysis of algorithms course. ESW 501 is not directly com
parable to any single undergraduate course in most curricula. It in
cludes a wide range of topics such as computer architecture, program
ming languages, operating systems, and hardware/software relation
ships. These two courses are not counted in the 45 credits required for
the MSE degree.

www.manaraa.com

188 MSE Program at Seattle University after Six Years

B. Core Courses

These courses are intended to address all of the major areas of activity
of software engineering. The importance of communication skills is ad
dressed by making it the first course in the required curriculum (ESW
508) as well as by requiring various forms of communication throughout
the MSE program. These include written expositions, as well as oral
presentations, with appropriate visual supporting materials, for example.
Some core courses, such as ESW 510,512,514 cover the more tech
nical areas, while courses such as ESW 531 are more directed toward
the management aspects. However, there is no attempt to artificially
separate the technical from the management concepts. Management
and/or technical issues may be discussed as required in any given
class, depending upon the orientation and background of the students
and instructor. ESW 518 is an interesting case in point. Although the
course could be taught from a strictly technical viewpoint, the current
approach is to teach about metrics and their use in the management of
software projects. The students are required to have previously com
pleted the ESW 531 Software Project Management course.

C. Elective Courses

Students are required to complete 12 credits in elective courses. Here
they may extend their technical background, by taking courses such as
artificial intelligence or database deSign, or they may opt to take ad
ditional management oriented courses, either in software engineering or
in the regular MBA program.

D. Software Engineering Project

All MSE students must complete this three quarter sequence (9 credits)
involving a software project. These projects are group projects, typically
involving 4 to 6 students. The objective is to carry out a software
development project from start to finish, beginning with a brief statement
of the project requirements and (hopefully) ending with a finished,
marketable software product. This is very much a student project,
managed and carried out by the students themselves, with overall direc
tion by a faculty advisor. During the course of the project, students are
required to partiCipate in the management of the project as well as the
technical tasks and communications/presentations required. Formal

www.manaraa.com

Mills 189

reviews are required, usually coinciding with the major phases of the
software development cycle. These reviews also involve the faculty ad
visor and/or user/customer for the software. The software project may
originate from within the university or from outside. If from within, it may
result from a request within the department, or from some other
academic or administrative unit in the university. Projects originating
outside the university may arise from student suggestions, or from re
quests from business or industrial firms. Selection of appropriate
projects is extremely important, because of their central role in the
completion of students' degree requirements.

Although the software projects may involve almost any type of software
system, it is essential that certain requirements be met. Among the
most important of these are the following :

Project Size. Project teams consist of 4 to 6 students. Each student is
expected to work on the project an average of 10 to 12 hours per week,
over the life of the project, which is three quarters or approximately nine
months. Also, during the approximately three months preceding the

project, students are required to do some preliminary familiarization and
preparation for initiation of the project in earnest, beginning in the fall
quarter. This is usually done at a fairly relaxed pace but is essential for
the success of most projects. Thus, projects selected must be of ap
propriate size to be possible to complete by the student team in the time
allowed.

Project Complexity. The effort required to complete any project
depends on both the size and the complexity of the system to be imple
mented. Thus, the complexity of the system must also be considered in
the selection process.

Required Schedule. The projects are constrained to the academic
year time frame, with initial identification of the projects done in the
spring quarter, and the actual project work done in the following three
quarters (September through June). Thus, it must be possible to com
plete the project within this time frame, and the user/customer must be
amenable to it as well.

www.manaraa.com

190 MSE Program at Seattle University after Six Years

Project Support. The project must, of course, also be within the scope
of the total resources of the department, including hardware and
software available to it. Projects originating outside the university often
require facilities not possessed by the university. Such projects are still
possible, if the requesting agency is willing to provide this additional
support to the project, and this has been done quite successfully in
some projects. In addition to computing resources, the projects also
require significant commitments of time and effort from the
user/customer agency. This commitment will primarily be in the form of
extensive communications with the project team and in participating in
the required project reviews. Since these are student projects, which
can conceivably fail, the customer must make this commitment knowing
that they do not have an absolute guarantee of a finished product.

The software project is seen as the capstone of the MSE degree
program. It provides an opportunity to focus and use all of the principles
and techniques covered in the coursework. For these projects, "real
life" tasks have usually been chosen, rather than mere academic ex
ercises. Previous projects include accounts payable, computer-aided
instruction, computer graphics and library circulation systems [64].
Projects currently underway include an artificial intelligence expertise
transfer system, robot programming language and hardware simulation

software. In general, the results of these projects have been quite good,
even though not all projects have produced acceptable software sys
tems. The results clearly demonstrate that such projects can be carried
out in a real world atmosphere and still be controlled to provide a useful
final learning experience.

As indicated previously, the typical student in the MSE program is fully
employed in the software business. Under these circumstances, the
MSE program should require three years to complete. The recom
mended schedule for completion is as follows:

www.manaraa.com

Mills

YEAR
1
2
3

FALL
508,510
518, elective
585

WINTER
512, 531
543, elective
586

(Software Project.)

191

SPRING
514,516
elective, elective
587

Table 1. Recommended Completion Schedule

Implementation Considerations

The MSE curriculum at Seattle University was first implemented in the
fall of 1979. As originally implemented, the curriculum included a first
course, ESW 505 Introduction to Software Engineering. As experience
was gained with the program, and the qualifications of entering students
increased over the first five years of the program, this course was no
longer felt to be necessary or desirable. It was dropped from the
program in 1984. Thus, the curriculum in use is that described in the
preceding section.

A number of difficult issues complicate the implementation of a program
such as the MSE degree. Among these are:

1. Initial placement of the academic unit in the university

2. Faculty/staffing considerations

3. Academic/industry balance

4. Computing resources

5. Curricularltext materials

6. Rapid rate of technological change
In the following, each of these issues will be discussed with regard to
the Seattle University program.

1. Initial placement of the software engineering program In the
university. Although this author was not personally involved with the
program at its beginning, it is my understanding that this was not a sig
nificant problem at Seattle University. The program was initiated by Fr.
Francis Wood, S.J., then Chair of the Electrical Engineering Depart
ment. The university includes a School of Science and Engineering, in

www.manaraa.com

192 MSE Program at Seattle University after Six Years

which electrical engineering is housed, and the new program was also
established in that school but as a separate graduate program. The fact
that the founder was an engineer, and the new program was a graduate
program rather than an undergraduate program, probably eased the
problem of where to place the unit. In other environments, the place
ment of software engineering within the university, or even the recog
nition of software engineering as an academic program, may arouse
considerable controversy.

2. Faculty/Staffing. The acquisition and retention of qualified faculty is
one of the most severe problems to be faced in implementing a software
engineering program. Even among computer oriented disciplines, those
suitable for software engineering positions are among the most attracted
to and sought after by industry. Industry can offer more attractive
salaries and more sophisticated and exciting computing environments.
Even with regard to the selection of faculty, questions abound. What
qualifications should prospective faculty members have? What discipli
nary background is required? What about industrial experience?
Management experience? All of these questions are difficult and are
further complicated by a dearth of qualified applicants of any type. At
Seattle University, the first priority has been placed upon recruiting
PhD's in computer science, with extensive professional experience in
software - a nearly impossible task.

At the present time, the regular MSE faculty at Seattle University is part
of a faculty group that supports both computer science and software
engineering. This group includes a total of eight full-time regular faculty,
three of whom are committed almost entirely to software engineering. In
addition, some of the other regular faculty members occasionally teach
software engineering courses. At best, however, this regular support
totals about four full time equivalent (FTE) faculty positions. This is
clearly not an adequate number to staff all of the courses required for
the MSE program. In addition, it is practically impossible for three or
four people to cover all of the areas of expertise required. Thus, it has
always been part of the implementation philosophy of the program to
use adjunct faculty persons from local business and industry to supple
ment the regular faculty - both in number and in areas of expertise.

www.manaraa.com

Mills 193

Thus, approximately six courses per year are covered by adjunct faculty
from local industry who have expertise in particular areas such as com
puter graphics or real time systems. This allows the coverage of a
broad range of elective courses in an effective manner with a relatively
small faculty group.

3. Academic/Industry Balance. An appropriate balance must be
struck between the underlying theoretical and conceptual bases of
software engineering and the practical everyday demands of the in
dustry workplace. This is a major issue for almost every course in the
MSE curriculum. The overall approach has been to attempt to present
basic concepts and fundamental principles, and then to relate these to
the practical conditions of the business and industrial environment. A
good example of this is the analysis and design courses. Attempts are
made to cover the basic concepts as embodied in a number of major
methodologies. In addition, students are required to use at least one
methodology extensively in the program. The emphasis is upon trying
to teach concepts of lasting value, plus the ability to learn and adapt to
new concepts and methodologies which may be encountered in the fu
ture. Although the university remains the best place to teach underlying
formal concepts in a reasonably short time, there are other skills and
techniques that can better be learned in an on-the-job setting. Further
more, in the computing industry especially, there are conditions and
situations in the real world that are impossible to duplicate in the univer
sity setting. This is true for a number of reasons, including costs and
the fact that no standardized industrial software environment exists.
The key then to some degree of success in this area is to recognize
these different areas and concentrate our efforts on those most suited to
the formal setting.

4. Computing Resources. A successful program in software en
gineering must, of course, have access to computing resources at least
comparable to that which students are likely to confront on the job.
Computing resources at Seattle University have been fairly limited to
systems such as an HP 3000/48, VAX 11050 and IBM PC or PC/XT
systems. However, it has been possible to augment these facilities sig
nificantly, especially in the software project courses, via the use of

www.manaraa.com

194 MSE Program at Seattle University after Six Years

equipment provided by the project sponsors (outside business or in
dustrial firms). However, as more sophisticated software development
environments come into general use, it will continue to be difficult to
provide the computing environment necessary for a viable program.

5. Curricular/Text Materials. There still exist very few programs offer
ing software engineering degrees. Thus, there are few software en
gineering curricula, and many courses in our curriculum for which it is
difficult to find good texts or other curricular materials. This results in a
number of effects, including placing a tremendous burden upon faculty
members to develop their own course materials. The resulting strain
often results in lowered course quality and/or the loss of qualified faculty
members due to burnout. Although this situation is improving, it will
continue to be an important consideration. This also exacerbates the
general problem of attracting and retaining qualified faculty members.
The teaching job is simply that much more difficult, and a good faculty
member is correspondingly more difficult to replace, when good
text/course materials are not available.

6. Rapid Rate of Technological Change. The rapid rate of change in
the basic technological environment for software engineering will con
tinue to present tremendous problems for the implementation of
academic programs. It intensifies most of the problems already listed.
It makes it even more difficult to find good faculty members - and dif
ficult for good faculty members to remain so. It makes it more difficult to
provide adequate computing environments - and difficult to maintain
those, once available. It is probably the single most important factor
which both makes software engineering challenging and exciting - and
at the same time overwhelming and discouraging. Faced with limited
resources, there is no obvious way to resolve this problem. Possibly the
most important part of dealing with it is to try to recognize those aspects
of change which are so essential that they must be dealt with - and
ignore, if we must, those which are not so essential.

Results of the MSE Program

The Seattle University MSE program began in the fall of 1979. The first
expected graduation date was then June 1982, and four classes have

www.manaraa.com

Mills 195

graduated to date. Approximately 33 students have been admitted each
fall since 1979. The number of students graduated each year since
1982 has averaged 22. Thus, approximately two-thirds of the students
admitted have completed the degree program. However, the perfor
mance of classes to date has varied considerably.

As in many other graduate programs, MSE students are required to
complete the degree requirements within six years after the coursework
is begun. Thus, it is reasonable to expect that almost all students who
intend to finish the program will have done so within six years of their
admission. Only the two classes admitted in 1979 and 1980 will have
encountered this six-year limitation by the end of this year. Thus, prob
ably all or most of those students who will finish the program will do so
by June 1986. The time required by students in the various entering
classes to complete the degree program is shown in the following table.

Number Completing Degree After n Years:
(Percentage of number originally admitted)

Year Number
Admitted Admitted n=3 4 5

1979 41 18 (44) 24 (59) 31 (76)
1980 34 8 (27) 16 (45) 19 (54)
1981 36 13 (36) 22 (61) 23 (64)-
1982 31 14 (45) 15 (48)*
1983 28 10 (37)-

• -- Projected numbers for June 1986 graduation.

Table 2. Admissions and Graduates

Seattle University Software Engineering Program

6

33 (80)
20 (59)-

Table 2 above indicates that although the program should be completed
in three years, almost half of those who graduated from the first entering
class took more than three years to do so. The delays (and probable
eventual failure to graduate) were even greater for the class entering in
1980. In that case, 8 (27%) of the 34 entering students graduated after
3 years, and 11 more, for a total of 19 (54%) after 5 years. Since the

typical student is fully employed and often married, the pressures of job
and family life often dictate the rate of progress through the program.

www.manaraa.com

196 MSE Program at Seattle University after Six Years

This is true not only on a year-to-year basis but also on a quarter to
quarter basis. Table 3 shows the number of students enrolled each
quarter since the program began.

Number of Students Enrolled in Quarter:

Academic
Year

1979-80
1980-81
1981-82
1982-83
1983-84
1984-85
1985-86

Em!
49
76
94
92
95
87
94

Winter
44
65
84
84
90
80
87*

'Projected for remainder of current year.

fulli.o.g
37
63
79
80
80
76
80'

Table 3. Number of Students Enrolled Each Quarter

Seattle University Software Engineering Program

As indicated by Table 3, approximately 80 to 90 students are enrolled in
the MSE program in any given quarter. Previous studies indicate that
students' academic backgrounds vary widely, with about 30% in math
ematics, 20% in computer science, 40% in engineering and physical
sciences, 20% in business administration and management, and 20% in
other disciplines [64]. The total of the indicated percentages exceeds
100 because many students hold second degrees or dual under
graduate majors. In addition, almost 15% of the students held ad
vanced degrees in other disciplines prior to admittance to the MSE
program.

In terms of expertise, the previous study indicated a distribution of about
40% in scientific/engineering, 35% in business/administrative applica
tions, 20% in real-time applications, 15% systems programming, and
15% "other." This corresponded roughly to the figures for computer
professionals employed in the Seattle area. The level of software ex
perience ranged to over 15 years, with a median of 4.5 years at the time
of entry to the MSE program.

It is difficult to measure the real success of the MSE program. How
should it be measured? In terms of salary of the graduates? By ap-

www.manaraa.com

Mills 197

parent job status or rank? The program cannot easily be measured on
the basis of job placement upon graduation since nearly all of the stu
dents are employed as they progress through the program and do not
necessarily seek new employment upon completion of the program.

One measure of the success of the Seattle University MSE program is
the high regard in which it is held by local software professionals. This
is probably most visibly evidenced by the large number of applications
for admission received each year. During each of the past three years,
approximately 115 applications have been received, while only about 35
new students have been admitted each fall.

On a strictly qualitative basis, many favorable comments return to the
program from local industry. Local industry and business organizations
support the program well both by sending students to it and by providing
financial support for those students. Informal contacts with both current
students and alumni of the program yield many reports that they are
indeed using the concepts learned in the MSE program and that it has
enabled them to get the job done more quickly and effectively. In the
final analysis, this may be the highest rating the program might receive.

Seattle University will, no doubt, continue to struggle with all of the im
plementational problems outlined above. Nevertheless, the favorable
feedback received from our students and their employers clearly in
dicates that the MSE program has very effectively addressed an impor
tant educational need in the local computing environment.

www.manaraa.com

198 MSE Program at Seattle University after Six Years

Appendix

MSE Course Descriptions

ESW 500. Information Structures and Algorithms

Theory and applications of linear, tree and graph structures; memory
management, sort-merge, algorithm design and analysis.

ESW 501. Computer Systems Principles

Survey of computer systems architecture, programming languages, and
operating systems. Relationships among hardware and software.

ESW 508. Technical Communication

The role of communication skills in software engineering. Organizing
ideas, writing, speaking, structure and content of proposals, reports,
manuals and other software project documentation.

ESW 510. Software Systems Analysis

System requirements analysis and functional specification methodology,
tools and techniques. Prerequisite or corequisite ESW 508.

ESW 512. System Design Methodology

Software system design methodology, tools and techniques. Prereq
uisite ESW 510.

ESW 514. Programming Methodology

Software system implementation methodology, tools and techniques.
Programming language capabilities. Programming style. Principles of
unit testing. Prerequisite ESW 512.

ESW 516. Software Quality Assurance

Managerial and technical aspects of verification, validation and quality
assurance. Theory of testing. Prerequisite ESW 531.

ESW 518. Software Metrics

Quantitative approach to software engineering and management.
Metrics and tools to evaluate, control and estimate the software life
cycle. Reliability, size, quality and complexity measures. Prerequisite
ESW531.

www.manaraa.com

Mills 199

ESW 531. Software Project Management

Organizational context of software development. Analysis of life cycle
phases. Scheduling and budgeting techniques. Management, planning
and control techniques. Personnel development and utilization. Prereq
uisite ESW 508.

ESW 533. System Procurement and Contract Acquisition

An introduction to the software procurement environment, contract law
and the fundamentals of negotiation. Specification and control of
products and process. Prerequisite ESW 516.

ESW 541. Database Systems

Review of database management techniques. Survey of database
management systems; their use, architecture, deSign, implementation
and cost/benefit/performance tradeoffs. Prerequisite ESW 514.

ESW 543. Formal Methods

Theory of program function and structure. Proof of correctness tech
niques. Automatic programming. Prerequisite ESW 514.

ESW 551. Artificial Intelligence

Survey of the field of artificial intelligence. Expert systems, robotics,
language and pattern recognition. Prerequisite ESW 514.

ESW 560. Human Factors in Computing

Automation of user processes, design of user interfaces, data presen
tation techniques and the human-factor aspects of operations and main
tenance procedures. Psychology of computer programming. Prereq
uisite ESW 508.

ESW 562. Data Security and Privacy

Encryption, database security and implementation of protection
schemes in operating systems and programming languages. The legal
and ethical aspects of security and privacy. Prerequisite ESW 514.

ESW 564. Computer Graphics

Analysis and generation of pictures by computer graphics hardware and

software. Prerequisite ESW 514.

www.manaraa.com

200 MSE Program at Seattle University after Six Years

ESW 566. Real Time Systems

Design, implementation and maintenance of real time systems. Data
acquisition systems, process control systems, interface techniques.
Prerequisite ESW 514.

ESW 585. Software Engineering Project 1
ESW 586. Software Engineering Project 2
ESW 587. Software Engineering Project 3

A three quarter sequence in which students are grouped into teams that
undertake a software project using tools and techniques presented in
previous courses. Sequence generally begins in the fall and ends in
spring quarter. Prerequisite ESW 516,518, and satisfactory service as
project reviewer on an assigned prior project. ESW 518 may be taken
concurrently with ESW 585.

www.manaraa.com

Academic/Industrial Collaboration
in a Postgraduate

Master of Science Degree
in Software Engineering

David Budgen, Peter Henderson, Chic Rattray
University of Stirling

Abstract. This paper outlines the organisation of a new Master of
Science (MSc) in Software Engineering that has been set up as a
specialist conversion course 1 for graduates who have had some ex
perience of computer programming. The most distinctive feature of
the programme is that this degree involves the participation of an
industrial partner in providing some of the teaching and a period of
industrial placement. Some observations upon the first year of this
degree have been included.

Introduction

The Stirling Structure: To clarify some of the pOints that will arise
later, it is useful to provide a brief outline of the academic structures that
exist at the University of Stirling. Historically, the Scottish education
system has followed a broader and less specialised path than that of
England and Wales, and traditionally, a university education begins a
year earlier in Scotland.

However, while a General Degree programme lasts for three years, an
Honours Degree programme has a four year span, and so an Honours
graduate from a Scottish university will normally have been educated to
the same level as their English counterparts.

Stirling is the newest of the eight Scottish universities, having been
granted its charter in 1967. It currently has about 3100 undergraduates
and postgraduate students. Unlike any other university in the U.K., Stirl
ing operates a scheme of two semesters in preference to the usual

1 For American readers. the British often use the term 'course' for both 'course units' and also to
mean a degree programme. (DB)

www.manaraa.com

202 Academlcllndustrial Collaboration in Postgraduate MS Degree

three terms. Each semester lasts approximately fifteen weeks, including
a teaching period of twelve weeks. All course units are modular in form,
and normally consist of three hours per week of lectures, together with
one hour of tutorial (or two to three of laboratory). A grade for each
course unit is issued at the end of semester. This grade is normally
made up from assign'ment grades plus the examination grade.

An undergraduate will normally take three course units in each
semester. In the Scottish tradition, undergraduates do not specialise
during the first four semesters, but those selected for an Honours
programme at the end of this period will then undertake eleven honours
units over the next two years. For computing science students, the final
year project will usually occupy two of these units.

The MSc in Software Engineering: To help meet the demand for
software engineers, the SERC (Science and Engineering Research
Council) has supported a number of specialist postgraduate conversion
courses at selected universities.2 The Stirling degree is one of the most
recent of these to gain approval, and is distinguished by having an ex
tensive component of industrial collaboration and experience within its
structure. The programme occupies eighteen months, rather than the
conventional twelve months, and involves a six-month placement in an
industrial setting. This part is currently provided and funded by Inter
national Computers Ltd.lStandard Telecommunications Ltd. (ICUSTL)
the U.K.'s major computer manufacturer, and takes place at their main
software research centre. In the future, it will also be possible to accom
modate some students who are sponsored by other industrial partners
and who will undertake their placement with their sponsor.

This joint project arose from the strong research links that already ex
isted between ICUSTL and Stirling, represented by research projects
funded from ICL/STL, Alvey and Esprit. Within the U.K. this represents
an uncommon degree of collaboration between industry and academia
at this level of postgraduate education.

2A postgraduate conversion course is one that takes graduates from other disciplines
and 'converts· them to the chosen discipline.

www.manaraa.com

Budgen, et al 203

As the final authorisation for the course was only provided in the late
Spring of 1985, the course is still in its first year, and not all aspects are
in their 'final' form. However, sufficient progress has been made with
the first intake for us to be able to provide some initial observations on
this form of MSc programme.

Course Objectives

The MSc in Software Engineering is intended to form a 'specialist con
version course,' producing software engineers who will be of practical
use to industry. Candidates are expected to have had some exposure
to computing in their first degree; of the first intake, two have joint
degrees in computing science, although others have only had fairly
limited programming experience.

In teaching the course, we sought to create a programme that would
provide a sound foundation of applied computing science, followed by a
period of industrial placement, and finally ending up with a project and
dissertation as the final assessment item. Within this framework we had
to construct our programme with only limited additional resources being
available for teaching new courses, and so we sought wherever pos
sible to integrate existing courses. Since our industrial partner was will
ing to provide some lecturing effort and seminars, we also needed to
include these. So the programme for the MSc contains new courses,
courses drawn from the undergraduate honours programme, and in one
case, a course taken from an existing postgraduate diploma programme
for Information Technology.

Course Structure

course occupies eighteen months, beginning at the start of the
.~t1tumn Semester (mid-September). The student calendar for the
course is:

i)
ii)
iii)
iv)
v)

Sept-Dec
Jan
Feb-June
July-Dec
Jan-Mar

Semester 1 (Stirling)
Two-week industrial acquaint visit (ICUSTL)
Semester 2 (Stirling)
Industrial placement and project (ICUSTL)
Final project and dissertation (Stirling)

We look at these in more detail below.

www.manaraa.com

204 Academic/lndustrial Collaboration in Postgraduate MS Degree

Academic sessions (I & iii): Postgraduate Master's degrees at Stirling
usually require students to complete four course units per semester
(undergraduates normally complete three units per semester), and the
MSc has followed this form. The first semester is concerned with bring
ing all students up to a base level of technical competence. It has a
theme of fundamentals, and the four course units are:

1. Pascal programming/practical specification
(P. Henderson's 'me_too')

2. Data structures, files and basic computer forms

3. Programming language syntax and semantics

4. Software Engineering principles

Unit (1) was devised especially for this MSc; (2) is taken from the syl
labus of another postgraduate taught unit; (3) is the third year Honours
core unit, which must be completed by all Honours students, and (4) is
an elective unit from the fourth year syllabus. This last unit is primarily
concerned with specification and design, although some lectures are
devoted to such issues as testing, documentation, project control, etc.

In the second semester the theme is software systems, and the stu
dents proceed to study more specialised topics, pursuing a programme
which is made up from the following course units:

1. Methods of formal specification

2. Concurrency and operating system concepts

3. Computer networking

4. Compiler design or expert systems

A major deficiency of this programme is that there is no material cover
ing database issues, primarily due to resource limitations. In future
years we intend to find ways to remedy this and to include some
database aspects in the second semester.

Industrial Components: There are two major components to the in
dustrial side of the course. The initial acquaintance visit (January) is
intended to provide the students with some idea of the organisation of
ICUSTL, and with the form and range of research projects that are be-

www.manaraa.com

Budgen, et al 205

ing undertaken there. At the end of this visit, each student (with the aid
of ICUSTL staff) should have determined which project they will be join
ing in the summer, and have established contact with their future super
visor.

During the spring semester, a member of the Stirling staff will be ap
pOinted to liaise with a student, and with the student's project super
visor, so that we have a triangle which is formed by the student, the
industrial supervisor and the academic supervisor.

The main project period occupies six months, and during that time, each
student will work as a member of the chosen ICUSTL project team,
funded by ICUSTL. (This keeps the SERC contribution to the normal
twelve month grant.) The students will also take part in the normal
graduate induction programme at ICUSTL and will operate as a single
group for such purposes. At the end of this period, each student will
produce a short written report detailing their experiences during the six
months. A copy of this report will form an annex to the final dissertation
that is submitted for the degree.

Project and Dissertation: For the final three months, the students will
return to Stirling and undertake a 'traditional' MSc project - the topic for
this having been agreed upon with the academic supervisor during the
previous spring semester. This topic need not necessarily be directly
related to the project that was followed during the industrial placement.

In addition to the industrial placement, ICUSTL supplies a number of
'guest lecturers' and seminar speakers during the teaching period. As
an example of this, Dr. Barbara Kitchenham has lectured on the 1985
autumn course unit on software engineering, and there are similar lec
tures arranged for two of the units that will be held during the spring

semester. For 1986 a number of guest lectures on database issues
have been arranged for the MSc students in order to partly meet the
shortcomings of the course units. Since some of these units are also
attended by undergraduates, the benefit of the industrial collaboration is
spread more widely than just the immediate MSc course.

www.manaraa.com

206 Academlcllndustrlal Collaboration In Postgraduate MS Degree

Observations

The first intake of twelve students was in September 1985, and we are
now organising the recruitment for September 1986. Two students
opted out from the MSc within the first few weeks; the remaining ten
have successfully completed the first semester and the industrial ac
quaint visit.

Comments on progress have been divided into three main sub
headings: social dealing with how the postgraduate students have in
tegrated, technical concerned with the facilities provided for them and
how these have been used, and academic describing the academic
aspects of the course as completed so far.

Social: As only one student was a Stirling graduate, the ten students
formed a small group, which had no direct links with the rest of the
students on campus. Most of the group resided on campus. A problem
that was identified in the first semester was that for each of their course
units, they mixed with a different group; one course was for them alone,
the others were joint with the Information Technology Diploma
postgraduates, final year honours students, and third year students.
This led to some problems of identification - accentuated by the
knowledge that they were the first students on this particular course.

With that in mind, ICUSTL have taken care to keep them as a group for
the initial acquaint visit, and have made clear to'them that it is the inten
tion to continue this for the induction sessions during the six-month
placement. In the second semester they will mainly share course units
with honours students, and with that in mind, our early attempts at social
events with the postgraduate students from the information technology
course may have been the wrong approach.

This aspect should not be given undue emphasis, but in a small campus
university a sense of identity is important, and has significant effects in
terms of how quickly the students settle and are able to concentrate
effectively.

So far there is no indication that the distance between the ICUSTL and
Stirling sites (at least 250 miles) forms any problem for the students.

www.manaraa.com

Budgen, et al 207

Technical: For the course units of the first semester, the main com
puter tools have been UNIXTM3 Operating System (System V on an
AT&T 3B5) and the Pascal programming language. Some care was
taken to limit the use of other tools during this early stage, although
towards the end of semester the students did use Wang pes.

The third and fourth year students also use the department's own UNIX
engines and terminal rooms, and we had hoped that the shared use of
these facilities would result in the postgraduate students being assisted
by the undergraduates in getting up to speed with UNIX and Pascal.
Partly for the reasons given in the previous section, this did not happen
as much as we had hoped. For 1986 it may be useful to try some more
'bribery' in the form of joint social events with the final year under
graduate students in order to assist the progress of integration for the
postgraduates, which was only beginning to take effect by the end of the

autumn semester.

At present, we do not have an Ada environment that is adequate for use
in teaching, but one possible development for the future might be to
begin this course by teaching a subset of Ada instead of Pascal. This
might help with the spring semester courses where we will currently
need to introduce Modula-2 as well as Prolog and/or Hope.

Academic: In the first semester, we feel that the choice and the
balance of the units was quite successful, and this seemed to be con
firmed by the quality of the grades produced.

For most course units, the postgraduate students were assigned to their
own separate tutorial groups. Sometimes these met for a few extra
sessions at their request. The only exception was the software en
gineering unit, where we traditionally run small seminar groups in which
each student is asked to make a short presentation on a (short) paper
selected from the current literature. A list of these papers is given in
Appendix A. While this presentation is not directly assessed towards the
final grade on the course, it is made clear to the students that we regard

3UNIX is a trademark of AT&T Bell Laboratories.

www.manaraa.com

208 Academic/Industrial Collaboration in Postgraduate MS Degree

the ability to present an idea, or set of ideas, as an important skill that
needs to be acquired. On this course unit the postgraduate students
were deliberately mixed in with the final year students in making up the
seminar groups, so that the discussions and presentations could spread
the experience more fully. Overall, these tutorial arrangements worked
well, and a similar pattern is planned for the course units of the spring
semester, with special tutorial groups on most course units, but using
'seminars' on the expert systems unit.

Most of the course units that are taught within the Department of Com
puting Science result in a final grade that is based 40% on coursework
and 60% on examination. This leads to a fairly high loading of assigned
course work, and during the first semester it proved necessary to adjust
this for some course units. While postgraduate degrees normally in
volve completing four course units per semester, these course units are
not usually taught to third or final year students at the same time, with
the appropriate expectations as to experience. We found that the
volume of assigned work on some of the courses proved to be rather
demanding for the postgraduates who also had less experience of han
dling this form of assigned work. At Stirling we also require extensive,
formal documentation of assigned work, and simply learning these prac
tices can be time-consuming to a student who has not had previous
practice at providing the required information in these forms. Some fur
ther problems of clashing deadlines also added to the demanding
course load. In the end, some adjustments proved necessary both to
the volume of assigned work as well as to deadlines. For the current
semester some adjustments to the number of assignments have already
been made, and it is likely that we will extend the policy of giving to the
postgraduates assignments that are slightly different to those that are
given to the undergraduates on the same course unit.

Overall, the results from the first semester were encouraging, and we
plan to make relatively few changes to this part of the programme for
next year. The lack of database material in the second semester still
causes concern, and we will need to investigate some means of includ
ing this. One possibility might be to replace the concurrency/operating
systems unit that is also taught to undergraduates with a new unit for

www.manaraa.com

Budgen, et al 209

the postgraduates, which will be made up from half a unit on concur
rency and half a unit on databases.

So far, we have only had limited industrial involvement in the teaching of
the course material, though there will be more of this in the present
semester. Most students appear to have made good use of the oppor
tunities presented during the two-week industrial acquaint course at
ICUSTL.

Future Developments

Obviously we have yet to experience the effects of the most distinctive
feature of the course - namely the industrial placement. This course is
intended to provide trained software engineers who are ready to begin
to practise in industry rather than academics, and so this is an important
aspect. Liaison between ICUSTL and the staff at Stirling is still develop
ing (we had a group visit to ICUSTL in October) and is likely to become
a major item in the success of the course. For that reason, we will be
giving this a lot of attention over the next twelve months, and encourag
ing visits between the staff of the two organisations.

Student response has been encouraging, and there is an added useful
side benefit in that the final year students are also gaining some ex
posure to industrial experience and practices through the guest lectures
and seminars. We are currently building up a Centre for Software
Engineering Technology within the department that will act as a focus
for local industry, and we also expect this to play an increasingly impor
tant role in supporting the MSc in software engineering, by providing
students with further exposure to the particular needs of industry for
problem-solving skills.

www.manaraa.com

210 Academlcllndustrlal Collaboration In Postgraduate MS Degree

Appendix
Software Engineering Seminars

University of Stirling
Department of Computing Science

The seminars form an important part of the course, and you should try
to read as many of the recommended papers as possible. They should
give you some additional background feeling for the problems of the
subject. The papers chosen are reasonably short and fairly self
contained, and so should not require you to read all the references too!

Everyone in the class will be expected to lead the discussion on one of
the selected papers. We will normally discuss two papers per session.
In addition, there will be at least one seminar with a guest speaker, and
a class discussion session at the end.

All the papers listed are available in the library. We will provide you with
a photocopy of the paper that you are presenting. Please do not take
any of the relevant journals out of the library, as this prevents others in
the class from accessing them. The presentation should make some
use of the overhead projector (we will provide transparencies and pens)
- and if necessary we can make copies of short summaries for the
other members of the group.

Seminar Themes:

Week 1: Life Cycle and lts Limitations: i) "Stop the Life-Cycle, I want
to get off", G R Gladden, ACM SigSoft, Software Eng Notes 7, 35-39,
1982.

i) "Life Cycle Concept Considered Harmful", D D McCracken and M A
Jackson, ACM SigSoft Software Eng Notes 7,29-32, 1982.

"ii) "An Assessment of the Prototyping Approach to Information Systems
Development", M Alavi, Comms ACM, 27, 556-563, 1984.

www.manaraa.com

Budgen, at al 211

Week 2: The User Interface: i) "Ease of Use: A system design
challenge", L M Branscomb & J C Thomas, IBM Sys Journal, 23,
224-235, 1984.

ii) "Thoughts on Specification, Design and Verification", J Goguen, ACM
SigSoft, SE Notes, 5, 29-33, 1980.

Week 3: Design Methods: i) "A Design medium for Software", J F
Leathrum, Software Practice and Experience, 12,497-503,1982.

ii) "Pragmatic Problems with Step-Wise Refinement Program
Development", J L Diaz-Herrara, ACM SigSoft SE Notes, 9, 80-88,
1984.

Week 4: Management of Software Projects: i) "Software Quality
Assurance", F J Buckley & R Poston, IEEE Trans on Software Eng,
SE-10, 36-41,1984.

ii) "Managing' and Predicting the Costs of Real-Time Software", R D
Warburton, IEEE Trans on SE, SE-9, 562-569, 1983.

Week 5: Programmer Productivity: i) "The parable of two
programmers", N W Rickert, ACM SigSoft SE Notes, 10, 16-18, 1985.

"The parable of two programmers, Continued", W D Maurer, ACM Sig
Soft SE Notes, 19-21, 1985.

"The parable of two programmers - Still More" T E Barrios, ACM SigSoft
SE Notes, 21-22,1985.

ii) "Reviews, Walkthroughs and Inspections", G M Weinberg & D P
Freedman, IEEE Trans on SE, SE-10, 68-72, 1984.

Week 6: Maintenance of Software: i) "Issues in Software
Maintenance" B P Lientz, Computing Surveys, 15, 271-278, 1983.

Week 7 and 8 will be used for guest seminars and class discussions.
Week 9 will be used as a revision class.

www.manaraa.com

Section II
Part 3

Experiences With Existing Courses

Papers in this part are centered on evaluating the experience of teach
ing software engineering and its associated project courses. Susan
Gerhart reflects on her tenure at the Wang Institute, and William
McKeeman presents the project course he teaches there. Other project
courses are described by Richard Thayer and Leo Endres of California
State University at Sacramento and David Wortman of the University of
Toronto. Jon Bentley and John Dallen discuss their experiences using
smaller exercises.

www.manaraa.com

Skills versus Knowledge
in Software Engineering Education:

A Retrospective on the
Wang Institute MSE Program

Susan L. Gerhart
MCC Software Technology Program

Abstract. The author was a faculty member for three years
(1982-1985) in the Master of Software Engineering (MSE) program
(hereafter abbreviated as WIMSE) at the Wang Institute of Graduate
Studies. This paper distills that experience, organized in the form of
questions on the following topics:

• What is a software engineer?

• What is software engineering?

• What has been learned about software engineering educa-
tion?

A framework for analyzing the WIMSE experience will be constructed
and followed throughout the questions, with interspersed recommen
dations appropriate for the SEI Education Workshop. The purpose of
this paper is to provide some informal and subjective (and probably
idealized) observations on the WIMSE curriculum to complement the
more formal and objective information that is available in [2]. The
state of software engineering is also seen from the view of software
engineering education.

What is a Software Engineer?

A few years ago the classified ads in Sunday newspapers asked for
programmers of various specialities. Today they request "software
engineers," which may show an expansion of the role of people who do
something to produce software; programming is only one of those roles.
This trend emphasizes a broader range of products related to software
and the more professional sounding "engineering" title. To start off our
discussion of software engineering education, we need to know more
about what a software engineer does and is.

Is There Only One Kind of Software Engineer?

A software engineer may be found doing any of the following tasks:

• writing micro-code

• designing user interfaces

www.manaraa.com

214 Skills vs. Knowledge In SE Education: Wang Inst. MSE Program

• running potential products on test data

• building simulators for hardware designers

• acquiring requirements

• participating in design teams

• preparing detailed designs

• identifying reusable parts of code as it is developed

• building tools for other software engineers

• experimenting with prototypes

• supervising programmers

• writing documentation

• managing projects

• identifying new product lines

Some of these roles are full time multiyear jobs, even spanning careers.

Some are performed periodically or within the scope of single projects.
Some software engineers are generalists, while others see themselves

as specialists in the above areas. There 12 no such concept as the
"monolithic" software engineer. The software engineering field includes
many specialities and requires most of its members to be able to per

form a variety of functions. We need this distinction among specialities
to adequately discuss details of software engineering education.

Recommendation: A software engineering curriculum should be
designed to support a number of (specified) roles for software en
gineers. One test of a curriculum, then, is its coverage of the basic
skills and knowledge for specified specialities.

Recommendation: Identify and describe the specialities of software
engineering to clarify the needs of a software engineering curricula.

How Do You Know a Software Engineer When You See One?

Here comes our framework for the rest of the paper. In this definition,

we are not trying to distinguish a software engineer from a programmer,

rather to characterize a kind of technical professional. A software en
gineer:

www.manaraa.com

Gerhart

1. Understands his or her current role within an organization,
a project, and the individual's career. Software engineers
are able to work in several ways with several kinds of
other specialists.

2. Knows several ways of doing particular tasks. A software
engineer has a choice, at least conceptually, of doing jobs
in different ways, either through previous experience or
from education. These methods can be articulated and
adapted. The software engineer knows how to evaluate
the results of using a method, can make a legitimate
choice among methods, and understands the basis for
each. Likewise with tools, a software engineer knows of
several tools possibly appropriate to the tasks at hand and
how to use them effectively.

3. Has an educational familiarity with a variety of relevant
technical material. A software engineer knows of books
and journals which might serve as sources of information
on methods, tools, or algorithms. A software engineer
also is aware of professional organizations, both local and
national, and the services they provide.

4:Pfans his or her work. By virtue of having choices of
methods and awareness of resources, a software en
gineer makes choices on how to work. Furthermore, a
software engineer has the experience to gauge how long
tasks will take and is able to trade off tasks and quality.

215

Though these might seem like obvious characteristics, we'll see that
some of the easily omitted characteristics (1 and 4) are the prominent
ones in the experience of the WIMSE program.

Notice that this definition excludes characteristics of responsibility that
are associated with professional engineers (licensing, ethics, etc.); true
professionalism ought to be addressed also, but separately. And the
definition also purposely excludes a large number of people in the field
who can only do what they are told to do and how to do it. Also, the
definition is watered down by requiring not specific knowledge or skills,
just a well informed choice and ability to grow. We do this to emphasize
the theme of this paper - that skills are as important as knowledge in
software engineering education. Moreover, we argue later that the state
of the field makes this rather minimal looking definition the maximum
one currently possible.

www.manaraa.com

216 Skills vs. Knowledge In SE Education: Wang Inst. MSE Program

Recommendation: Adopt a definition of a model software engineer
to be produced by a Master's of Software Engineering program.

We'll use this framework - roles, techniques, culture, habits - through
out the paper.

How Does an MSE Program Affect the
Students' Career Paths as Software Engineers?

Students come to the WIMSE program to learn better ways of dOing
their jobs, and the skills and knowledge to move them on to new jobs.
Typically they have several' years of experience in a narrow slice of
software engineering and often they feel stuck. Often, they have been
trained in a field other than computer science or software engineering,
perhaps a non-engineering field, and are now making a commitment to
the software engineering field. Many of the students entering a
"professional" degree program today are those lured away from
graduate school in the past by the opportunities of the field. They are
excellent students who like to do interesting technical work at good pay.
Their return to school is often motivated by intellectual needs as much
as vocational ones. They just know they aren't well enough educated to
work the way they want. They want choices and control in their work
life. They already have role experience, good work habits, minimum
formal knowledge, little formal training in technique, some exposure to
tools, and a vague feeling for the literature of software engineering.
They want to feel, and be, more professional in their job performance.

Many students end up in jobs that they never would have found inter
esting or qualified for without the MSE degree. For example, the inter
section of artificial intelligence and software engineering creates unique
jobs, e.g., in quality assurance of AI products and the application of AI to
software engineering functions. The MSE emphasis on software
development processes leads other students into quality assurance
where they can have the widest influence. Some students find ways of
avoiding management responsibility by increasing their technical skills
while others find technical areas that enhance their management roles
and some develop management skills. Within the WIMSE, a strong
career influence may be the multiple roles played within projects and

www.manaraa.com

Gerhart 217

assignments. These roles are not always taken seriously, but some stu
dents have the chance to experience for the first time planning of
projects and responsibility for design decisions. Tools, or possibilities
for tools, may be seen for the first time and suggest new fields of
specialization, e.g., tool-smithing. Some students find certain technical
areas that they might have moved into quite repugnant or attractive,
e.g., detailed product testing and quality assurance. In each case, they
learn at least a little of the basics required for that speciality and a feel
for where it fits into the total software production organization. By study
ing with other students experienced in various specialities, they gain

more insight into new roles.

The fourth of our characteristics of a software engineering is also a
strong determinant of career change. The WIMSE is intense, in dif
ferent ways for part-time and full-time students, but always requires con
centration, steady work, and interaction with other students.

Of course, there is specific knowledge gained along the way, but the
experience is much broader than just that knowledge.

Recommendation: An MSE program should be as explicit as pos
sible about its effect on participants' career goals.

Recommendation: An MSE program should recognize the factors
that are brought to the program by a mixture of experienced students.
Mixtures of full-time and part-time student bodies may both enrich and
complicate software engineering education, and should be carefully
thought out.

While concern for MSE students' careers was always high at the
WIMSE, this recognition of roles and their influence was never explicit.
The reason for stressing the career aspects of a professional school is
the need for making a program attractive and realistic in the education it
delivers to its students.

What Has been Learned about
Software Engineering Education?

The SEI workshop has provided the opportunity for comparing MSE
program content. Experience with WIMSE will now be described.

www.manaraa.com

218 Skills vs. Knowledge In SE Education: Wang Inst. MSE Program

Some Questions Regarding the Necessary Skills and
Knowledge of a Software Engineer

• What should a software engineer know, before and after a
MSE degree program?

• What skills are lacking in entering students?

• What skills and knowledge are gained from the MSE
program?

• What skills are still lacking upon graduation?
Following our framework, we'll address these questions for each factor.

Roles

Experience preceding an MSE program with some role within an or
ganization brings both maturity and knowledge. The sad difficulty of get
ting anything done, well or poorly, is a lesson easily acquired through
almost any job and helps to provide the motivation for studying manage
ment topics. It also adds realism to the idealism attached to many
methods and tools. As mentioned above, an MSE program graduate
should know more and different roles and how they interact. A manage
ment career path will show wider familiarity with what specialists do and
what their particular problems are. A technical career path will be more
productive through awareness of the demands and interactions of
various specialities.

Recommendation: The variety of skills of software engineers
provides a possible theme for organizing a MSE program. However,
there should not be too much specific training for roles.

Techniques

It is often surprising how few techniques known within software en
gineering literature are actually practiced. One reason is that few are
taught within computer science programs, e.g., systematic testing or
technical reviews, and many persons performing software engineering
have no formal training. Another reason is simply that few of the tech
niques work well at all. And, many programmers just don't want to try or
use them. It seems reasonable to expect that an entering MSE student
would have some control over coding practices, since these are most
widely known, but little else. That has been true in the WIMSE, though
even rudimentary coding skills may be lacking if a software engineer
has been pursuing specialities with minimal programming.

www.manaraa.com

Gerhart 219

It would be nice to say that, upon leaving an MSE program, a software
engineer would know various methods (and tools), how to use them,
and what to expect from them. Unfortunately, the state of knowledge
within the software engineering field can't support this. Certainly an
MSE should know the existence of methods and tools but broad or deep
experience is hard to come by. Almost all methods require substantial
projects to prove their usefulness, or their deficiencies, and these
projects cannot be performed within the scope of a degree program. It
is easier within a single company or a group of similar companies (e.g.,
government contractors or Ada-based developers) to teach methods
that are enforced or conventional; these, too, often lack an established
scientific basis but are "more valuable" because they are required.

Indeed, the measures of experience might be better gauged in terms of
frustration: level 0, when nothing is seen to solve a known problem;
level 1, when a promising method is seen, but not used; level 2, when a
method is used but the project is too large to really assess it; and level
3, when a method is used on the right size project and still fails to solve
most of the problems. Only in the sales literature of methodology ped
dlers are methods given uniformly high praise. Of course, some of this
frustration may trace to inadequate teaching or faculty inexperience, but
it is a wide-spread opinion that the methods themselves are at fault.

MSEs will usually gravitate toward one or two viewpoints that match
their own or which intrigue them, and then pursue the methods that fit
that viewpoint. For example, Parnas' document-driven approach to
software attracts many students. Viewpoints seem more valid and en
during than specific methods given the current state of knowledge within
software engineering.

Recommendation: Present different viewpoints; don't sanctify
methods or masters.

Educational Familiarity

Few entering students to an MSE program seem to have read widely in
the literature. A survey at WIMSE showed that about 1/3 were mem
bers of ACM, 1/3 members of IEEE Computer Society, and (after
overlap) about 1/2 were members of neither of the major professional

www.manaraa.com

220 Skills vs. Knowledge In SE Education: Wang Inst. MSE Program

organizations. It's fair to expect then that the primary journals and con
ference proceedings will be known to only a few students. With so
many students coming from other disciplines, it's not surprising they lack
a systematic introduction to the field. Of course, this characteristic of
knowing technical resources should be present after graduation. But it's
not as easy as it might seem, since, at least in the WIMSE, there's a
tendency to hand out all readings and not require students to forage
through the library for their own material.

Recommendation: An MSE program should contain some assign
ments that require the use of software engineering literature.

Recommendation: Pointers to the most accessible journals should
be explicitly given.

Also, there is a body of literature that doesn't fall into traditional
academic frameworks, e.g., the software products reviews and guide
books. This is particularly relevant in topics like reusability models of
software production.

Many students are not familiar with the path of papers from technical
reports through refereeing, what degrees of refereeing are applied, or
how the whole publication process works.

Recommendation: Explain the publication process to interested stu
dents and encourage them to participate as reviewers and con
tributors.

One chronic problem of journals and conferences is getting "practical"
input from authors and reviewers directly from industry; the MSE
program is a place for addressing that need.

Although the picture of methods mastered is pessimistic, there are many
general concepts that an MSE should know; for example, the strengths
and weaknesses of testing versus proving, the various ways of
representing design information, the process of transferring technology,

principles of good documentation, and some of the past and present
trends in viewing software. Even more important is having a structure
for organizing software engineering knowledge, e.g., knowing how to
relate theory and methodology to a tool.

www.manaraa.com

Gerhart

Recommendation: Organize an MSE curriculum through structure
and relationships of knowledge, not through specific knowledge.

221

For example, a good idea may be traced through theory, methodology,
technology, and management and evaluated on its contribution. We

argue later that little specific knowledge, e.g., Method X, is worth-while.

Habits

As mentioned, one major effect of the WIMSE is the production of work
habits that allow a student to survive the program. People who can't
concentrate or don't have the drive are weeded out in an oral examina
tion that measures, at least, intensity and drive.

Any rigorous professional program should produce such a strong effect,
although it might be over-looked as a factor in success. The WIMSE
requires the ability to plan one's work when there isn't possibly enough
time to do everything, get down to business in an hour's meeting time,
switch contexts of topics and people, always write up every important
idea and scrap of work, work with incompatible people, and trade off
better work on one piece with tolerably inferior work on another. In
several ways, a professional program may be much more demanding
than a PhD degree program.

Methods, Tools, and Techniques

• What methods, tools, and techniques are being taught and
used?

• Which ones bomb? Which are successful? Why?
It is important to emphasize again the variety of specialities within
software engineering and the different needs and backgrounds of stu
dents in an MSE program. Any course which covers many different
kinds of topics will automatically end up with a diversity of responses
(and course evaluations) from students; some topics will really strike a
strong chord, while others will completely bomb with different types of
students taking the course.

Recommendation: Don't expect uniform acceptance of topics
taught; recognize individual differences in students.

Here are some topics and recollections of them from the perspective of
teaching the software methods courses (Programming Methodology and
Software Engineering):

www.manaraa.com

222 Skills VS. Knowledge In SE Education: Wang Inst. MSE Program

Program Testing is a subject about which almost none of the students
have systematic knowledge, though most have been bloodied, and they
can learn a great deal in a short time. Unfortunately, the methods (black
box and white box) are unpleasant to use and easily foiled. The big
lesson is how hard testing is to do at all thoroughly and how fallible it
can be. In WIMSE, theory of testing was covered in Formal Methods
with testing practicalities and exercises covered in Programming
Methodology. Tools for testing make a modest impression, e.g.,
coverage analyzers and profilers. Systematic testing is a nice way of
introducing the principles of using methods.

Program Proving is always controversial and difficult. The concepts of
programming language semantics, problem domain knowledge, in
variant methods, and logic all come in one large mind-boggling pack
age. Taught in Formal Methods, this is difficult to reinforce in Program
ming Methodology since the students generally lack the logic and nota
tion skills to perform any exercises and have seen only a few, narrow
methods. The concepts that are retained are the distinction between
program and specification, the existence of methods like loop invariants,
and the proof difficulties presented by certain program organizations.
The possibility of specification proving and correctness-preserving trans
formations can be introduced and used to motivate alternative software
production models. However, some students find a strong attraction to
the material and are capable of using it well.

Abstract Data Types is probably the best link between formal methods
and programming methods with the emphasis on program structuring
and the support offered by programming languages such as CLU and
Ada. There should be many good exercises using abstract data types.

Software Design Methods are a problem area since there are so many,
each addressing different kinds of problems. The IEEE tutorials are the
best source of articles but few of the articles are instructive enough.
Standard design exercises don't exist in the literature and are hard to
find for a course context. The design methods all appear rather weak
and narrow, except for Jackson's methods which are more fully expli
cated. The existence of commercial design tools can be demonstrated

www.manaraa.com

Gerhart 223

and these tools are excellent candidates for substantive and user inter
face evaluations.

Technical Reviews are controversial and difficult to teach in a methods
course, but invaluable later during project courses. The procedures are
laid out in Weinberg's work, for example, but require a lot of experience
on the part of the instructor to avoid hurt feelings and to produce the
right critical review information. This is one of the most successful in
dustrial practices and often catches on well with WIMSE students.

Software production models, i.e., lifecycle, prototyping, iterative en
hancement, reusability, etc., make for some good reading and discus
sion but need project courses for experimentation with alternative ap
proaches. The software engineering literature shows a tension between
the large-scale government needs and the processes used in small,
product-oriented companies. This is an area of topics where there are
more opinions than results, and where it's often hard. to get down to the
crux of the approach.

Requirements Analyses are taught within WIMSE as course "definition
study" projects using an obscure method from the data processing
world. Real-life problems are solicited from within the Wang Institute and
from outside in local companies, with identified clients for each. Teams
of students follow the method on selected problems by gathering data
on the problem, existing procedures, and the organization, then analyz
ing the data, and formulating and evaluating alternative approaches.
These projects almost always produce valuable analyses and give in
sights on the complexity of the environment into which software systems
must fit. The problem always looks different at the end, often the data
gathered teachs a lot in itself, plus the formulation of alternative ap
proaches is a good exercise. While time-consuming, these projects also
offer the chance to apply project management methods and, some
times, requirements tools. Follow-on projects often occur. The method
used over 20 times has been found successful, although it required
adaptation to work.

www.manaraa.com

224 Skills vs. Knowledge In SE Education: Wang Inst. MSE Program

Specification methods and languages are only given cursory attention.

Standards may be discussed through the IEEE and NBS reports, but
these are often dry and hard to motivate.

In general, there are no textbooks that fit the WIMSE courses and ar
ticles from the general literature must be sought and used. This is a
continuing problem, since there is so much poor literature to sort
through and so little that fits the needs of the curriculum.

Recommendation: Establish a network or clearing-house for ex
changing good literature, exercises, and educational material.

Recommendation: Develop a good set of exercises along with a
curriculum.

The quality of an MSE program is highly dependent on the projects and
exercises performed along the way. Developing good exercises is one
of the great challenges for MSE curriculum instructors and developers.

There are many ways of delivering the software engineering material.
Panels of experts, e.g., practitioners in quality assurance, are good
vehicles for covering material and invited lecturers can often supplement
a faculty member's experience. Occasionally, videotapes are available
on selected topics and can be accumulated over time, e.g., of past
panel discussions. Often class discussions are more effective than lec
turers, but are equally challenging to the instructor to direct.

Technological Needs

• What technology base is needed for offering software en
gineering programs?

• How is it to be developed and used?
The WIMSE used a fairly standard UNIX environment supplemented by
PCs. Specific software tools were supported by a project [67] that iden
tified and imported worthwhile tools, helped train faculty and students in
their use, prepared supplementary tutorial material, and generally
provided the base for easing selected tools into the curriculum. This
effort was invaluable to faculty for demonstrating tools such as AIDES
(Hughes), PSUPSA, and PC-based design tools, as well as more mun
dane environment support such as revision control systems.

www.manaraa.com

Gerhart 225

The commitment to using software technology should be a major issue
facing those developing a MSE program. The technology exists and can
be obtained with modest resources (many vendors can be talked into
educational discounts), but the expense lies in the personnel to procure
the technology and make it usable. A minimum of six months lead time
is usually required to bring in a tool. At least a week of a faculty
member's time is required for learning each tool adequately to teach it
and to set the context for using the tool. Even making full use of some of
the UNIX utilities is a big task. Add that to the need to integrate stu
dents into simple fundamental utilities, such as news and mail and docu
ment preparation systems, and the technology base for supporting a
MSE program is substantial. The operating system base can be
handled by many people, but the specialized software tools require spe
cialized training. Note that the training need for curriculum demonstra
tion is different from that for production use of a tool, because the cur
riculum goal is most likely a demonstration of the essential capabilities
of the tool and minimal exercises for getting a feel for it.

Recommendation: Recognize the need for substantial support for
software technology in developing an MSE program.

A minimum technology base for an MSE program might include such
tools as: program profiler, program test coverage analyzer, revision
control system, data-based design tool with graphics, specification
processor and analyzer.

Recommendation: The Software Engineering Institute could devel
op a model minimum environment suitable for demonstration pur
poses in a MSE program. Training courses for faculty and tutorial
material in using the software tools should be provided.

Faculty Training

• Where does a faculty member acquire the knowledge and
skills to teach in an MSE program?

• What are the challenges?

Certainly, an MSE faculty member should have the same characteristics
as a software engineer, plus the experience to choose what should be
taught and to teach it. That would mean about five years, say, of prac
tical software engineering experience and the same of graduate educa
tion training. It would be desirable that experience be within the past five

www.manaraa.com

226 Skills vs. Knowledge in SE Education: Wang Inst. MSE Program

years, since the field has changed and memory fades. The person
should also have broad exposure to the software engineering literature
as well as that of their field of speciality within, probably, computer
science. They should have experience with a variety of software produc
tion methods, both formal and informal, and know many of the tools
available to software engineers today not just UNIX. They should hold
some strong viewpoints on how software should be produced, but be
open to alternatives outside their experience. And they should be able
to work on projects with groups of people as well as individually be able
to direct their own research.

Such people don't exist. Real industrial experience may be acquired
before or after graduate school. If before, it's likely to have been blotted
out by the graduate school experience; if after, it's probably not typical
of the MSE student's experience. People who have good careers going
in industry don't usually want to go into the cold, cruel world of
academia. Unless the faculty member went to one of the few graduate
schools that expose their students to software engineering concepts,
e.g., The University of Maryland, they are probably limited in recent
knowledge to their speciality within computer science. And without ex
plicit effort during prior industrial experience, the faculty member is un
likely to know any of the software engineering methods (hOW many
thesis students use the Jackson Design Method and technical reviews
in their dissertation projects?). Finally, the work modes of traditional
graduate schools emphasize individualism and exploration, both of
which differ from the MSE group project and discipline approach. The
traditional academic looks forward and dreams, while the professional

school academic must deal with the problems of the present. Unfor
tunately, the career path for a faculty member in a professional school
environment is unclear: What industrial or academic paths would be fol
lowed after leaving the professional program? And research often must
play some role for the professional school academic, but what research
models apply? And where do consulting and other forms of
academic/industrial interaction fit into the professional development of
faculty?

Does teaching in an MSE program require a PhD? Of course not, but
academic institutions usually do.

www.manaraa.com

Gerhart

Recommendation: Consider the career paths of MSE faculty mem
bers and their relationship to teaching in an MSE program. Don't bar
well educated practitioners who only lack a PhD

It's a hard job, but somebody has to do it.

227

This is probably the greatest challenge to starting MSE programs - the

ideal faculty member should have come through an MSE program! On

the-job training teaching management courses, or even methods
courses, is rough on the faculty and on the students. Yet there isn't any

way around it, short of really putting each class of MSE instructors
though an MSE program to teach them management, methods, tools,

and theory at the right level. Certainly, a faculty member can learn the
material one course at a time but is unlikely to learn a greatly different

area from their own past experience and this still doesn't make up for

lack of experience. And even one course at a time is rough, since most

courses have several topiCS.

... Recommendation: In preparing a description of an MSE program,
alscfprovide the background for faculty - how to get started in an
area, where to find the best literature, who to consult for exercises,
what's important and why. Provide practical information that will allow
faking experience.

Is Software Engineering Well Enough Developed as a
Discipline and as a Body of Knowledge to Support a
MSE Program?

Intellectually, no; pragmatically, yes.

Intellectually, the software engineering field is a hodge-podge of in
validated ideas; some are rooted in theory; others are market-driven.

Practically, however, there are enough good ideas to warrant an effort to
package some and teach them. There is a structure to knowledge and

a variety of viewpoints that can be transmitted. Furthermore, there are
role experience and work habits characteristics that may be gained

while studying different topics with experienced students in an environ

ment where it's possible to try new tools and techniques. However, it
would be wrong to believe that a professional degree program can add

much intellectual power to a person when the field lacks the necessary
scientific basis and experience to make advocated methods and tools
work well.

www.manaraa.com

228 Skills vs. Knowledge In SE Education: Wang Inst. MSE Program

Software engineering education is at the state where computer science
education was 15 years ago before the first textbooks started to come
out. However, software engineering faces a bleaker future, since it is
multidisciplinary and since the demand across the field for people to
build software leaves few to study the building of software.

Recommendation: Software engineering education is not a matter
of taking recognized techniques and packaging them; the field is still
in need of scrutiny and further development.

What Approaches Might be Used to Generate MSE
Curricula?

There are several approaches to developing a software engineering cur
riculum:

1. Base the curriculum in one existing field and spread
branches to others, e.g., from a management base into
computer science, from business information systems into
computer science, from computer science into manage
ment, etc.

2. Assume that the software engineering field is represented
by its literature and structure a curriculum that will present
the best portions of that material.

3. Identify the great (or, at least, the best) ideas of software
engineering and base a curriculum around them.

4. Select a theme, such as software engineering specialities,
and develop sub-curricula for each, unifying into a whole.

5. Survey practicing experts in the field and determine how
they do what they do well and what they need further, then
package that into a curriculum.

6. Decompose the knowledge of software engineering into
theory, methods, and tools and then structure courses to
cover each.

7. Select faculty who seem to have the right kind of
knowledge and allow them to teach what they know.

Recommendation: Adopt one such strategy to generate an MSE
curriculum.

Across any of these, we feel that the best work has to be the basis, not
the breadth of the available material.

Recommendation: Identify the few great ideas that have gained
acceptance or show the greatest promise and test any curriculum to
see that it adequately covers these.

www.manaraa.com

Gerhart

What is the State of the Quality and Quantity of Software
Engineering Literature?

229

Even the best ideas are unlikely to have found wide applicability, and so
to have been encountered in practice. Unfortunately, the best ideas are
often buried in the mass of software engineering journals and con
ference proceedings. Almost any article can be published in one of the
journals or conferences. The objective of the professional organizations
is often to create conferences that attract the most people and make the
most money. The result is a glut of conferences, some with virtually no
quality control.

The MSE faculty member has a responsibility to continually scan the
software engineering literature for new ideas, good tutorial papers,
pointers to tools, trends, and potential colleagues to recruit. This is
impossible to do today. The volume of literature is simply too great and
the density of worthwhile (in the context of software engineering
education) material too small. If there were a few top-notCh, sure-fire
sources the problem would be less, but the good material is widely
spread. IEEE Software and Computer provide frequent sources of good
software engineering education material, but often one, and only one,
good paper will appear in an off-beat or otherwise worthless conference.

Recommendation: Establish prizes, or other forms of recognition,
for the best papers, the best workshops, and the best research within
software engineering, perhaps in different categories of theory,
methods, and tools.

The problem with books is much less severe, since few appear and
publishers are usually good with samples. IEEE tutorials ~re the best
book source since somebody has screened the paper collections, but
even these may be unreliable. Several survey textbooks exist for con
text, but lack the necessary depth on most topics.

Recommendation: A network should be established of educators
who filter through the literature for the best new, and old, papers
appropriate for an MSE curriculum.

Recommendation: The WIMSE reading lists provide a good first
start as filters of the software engineering literature.

Indeed, many of the best papers are the older ones that appeared in the
early 1970's as the field was forming. The identification of really good

www.manaraa.com

230 Skills vs. Knowledge In SE Education: Wang Inst. MSE Program

material could go a long way toward helping MSE faculty assemble
material, not to mention possibly improving the quality of work through
out the field.

What are the Strengths and Weakness of the Wang Institute
MSE Program?

Consider again our framework for being a software engineer.

The WIMSE provides an opportunity for exploration of many roles and
specialities within software engineering. However, this isn't an explicit
goal of the program, but rather an occasional way of organizing projects.
This feature of the curriculum has been seen to influence the career
paths of several students. Not enough foundation material or ex
perience is provided, however, for students who may want to pursue
several specialities, e.g., related to management.

Many methods have emerged from five years of courses in WIMSE that
are teachable and appear valuable in the students' eyes. Some of
these are more like viewpoints, e.g., Parnas' document-driven ap
proach; others are off the path but have been made useful, e.g., the
SDM requirements analysis method; and some are extremely useful, if
fallible, e.g., systematic testing techniques. However, there are still too
many methods considered and too few given the opportunity for deep
use within projects. The problem here is one that pervades the software
engineering field and is aggravated by faculty inexperience with many
methods. This becomes a vicious circle for both faculty and students,
trying to learn enough methods to select or synthesize the right ones,
and never having the opportunity to explore any fully. There is always
more frustration than satisfaction with any of the methods tried.

Similarly, many tools have been successfully integrated into the cur
riculum, others used occasionally in projects. However, this technology
experience is fragile and limited. The main point is that it has been done
to some extent and has proved valuable to many students.

The WIMSE provides broad exposure to software engineering concepts.
Usually it is viewpoints that prevail over specific methods, especially

www.manaraa.com

Gerhart 231

since the methods themselves usually flop. Students sample a lot, ex
periment some, and pick up skills along the way. They form a structure
for their growing knowledge and assimilate various viewpoints.
However, the students are often spoon-fed the material and it is not
always certain they will continue to grow after graduation.

As discussed amply, the WIMSE develops many skills and habits that
lead to productive work. However, no explicit diagnosis of problems is
provided, as, for example, occurs in some computer science courses on
problem solving. Also, some basic skills in e.g., writing progress
reports, may be ignored.

Conclusions

This paper has tried to emphasize that the WIMSE is more successful at
providing skills and structuring knowledge than at providing specific
knowledge. Certainly, knowledge is imparted and the WIMSE has gone
a long way- toward finding the right kinds of knowledge to teach and
sometimes has been immensely successful in teaching it well.
However, we have claimed that the specific knowledge is less secure,
perhaps less valuable, than it looks because the software engineering
field as a whole has little "well tested" theory, methods, and technology.
A professional degree program can be no better than the state of
knowledge in its field. Little of certainty has been learned about
software engineering in general through the WIMSE.

Even though more is known, it is the knowledge residing in the faculty
that determines what is taught and how well. WIMSE faculty have had
to learn on-the-job most of what they teach and had little time to explore
deeply what they did not know. We have recommeded serious con
sideration for extended faculty training for MSE teaching.

The skills acquired by the students are related to the ways the courses
are run, the existence of project courses, and the intensity of the en
vironment. Perhaps, this paper has attracted some attention toward the
skills aspect of an MSE program.

In summary, we recommend a balance between skills and knowledge in

considering MSE programs.

www.manaraa.com

232 Skills vs. Knowledge in SE Education: Wang Inst. MSE Program

A Note on MCC and
S'oftware Engineering Education

MCC's Software Technology Program is directed toward long-term
research on the design of large, complex systems. The generic environ
ment (tools, methodology, integration) to be produced is called
Leonardo 1. One feature of the Software Technology Program's ap
proach is the study of teamwork among design specialists and the sup
port for their individual and coordinated needs. The research will com
plement that of computer science by dealing with requirements and
system-level design, rather than development after the system has been
specified. A well-educated population of software engineers will fill
some of the roles of Leonardo system specialists, although the system
level knowledge goes well beyond what an MSE covers.

The Software Technology Program research in progress should soon be
providing input to the software engineering field on various topics.
Studies of designers working in groups may provide new models of the
software design process. Additional input to those design process
models is coming from study of design methods in general and from
design experience in other fields. Exploration of possibilities for and
multiple views of the product will be studied and ultimately supported.
This broad approach to design process models may shed new light on
the design methods now entrenched in the software engineering field.
Visualization methods and tools are also being explored to better sup
port designers' views of their evolving systems. Information bases of
designs and problem domain information are being explored, heading
toward reusability. Technology transfer is a specific function within the
Program, involving coordination of liaisons from participant companies
and planning and execution of events supporting technology transfer. In
all, it is hoped that the broad approach of the Software Technology
Program and its focus on "up-stream" problems will add both vitality and
insight to the software engineering field. A better understanding of sys
tem design may help the software engineering field on a central topic
which is difficult to teach.

1 Leonardo is a trademark of MCC

www.manaraa.com

Gerhart 233

Acknowledgement

Glenn Bruns, a 1985 graduate of the WIMSE and now a member of the
technical staff at MCC, applied a test of reality to this paper. He's taught

me more than I taught him.

www.manaraa.com

Experience with
a Software Engineering

Project Course

W.M. McKeeman
Wang Institute of Graduate Studies

Abstract. This paper presents an approach to meeting the academic
objectives of advanced software engineering project courses. The
objectives are increased competence and confidence of the students
in carrying out software development projects. The academic context
includes a simulated industrial context. Part of the industrial context
consists of industrial roles played for the student team by the instruc
tor and others. The project itself is divided into tasks related to
deliverables and collateral responsibilities. The software production
model is a combination of the waterfall, iterative enhancement and
document-driven techniques. A software development environment is
mentioned although the details are presented elsewhere. A list of
project courses offered at Wang Institute (1982-85) is appended. Fur
ther detail is given for four project courses conducted by the author.

Introduction

This paper is intended primarily for teachers of software engineering
and secondarily for practicing software engineers. It presents a method
for organizing and teaching an advanced project course.

Software Engineering Project is a required course in the Wang Institute
Master of Software Engineering degree program. It has been taught 26
times at Wang Institute in the years 1982-1985. Six core courses in
software engineering are pre- or co-requisite.

The project course organization reported here has been used four times
(out of the total of 26). It simulates industrial practice in organization,
methods and deliverables. The objective of the course is experience
with the software engineering process. The objective of the simulation
is a software product.

The experience reported here is dependent on the context provided by

the Wang Institute MSE program. To the extent this context is dupli
cated elsewhere, this proposal should be successful elsewhere. Where
some of the needed qualities in student background and facilities are

www.manaraa.com

McKeeman 235

lacking, the course should be modified to provide the students additional
time and instruction during the project.

The Wang Institute MSE

Software engineering is the technological discipline concerned with sys
tematic production and maintenance of software products -that are
developed and modified on time and within cost estimates. A software
engineer must know what to do, when to do it, and how to do it ef
ficiently.

The Master of Software Engineering (MSE) degree program consists of
eleven one semester courses. Each course is designed to occupy thir
teen hours of student time per week. Six courses constitute the core of
the MSE - three in engineering methods, two in management and one
in system architecture. Three courses are electives, usually covering
technical material in computer systems. The remaining two courses are
projects, taken near the end of the program.

The Project Course

The project course is designed to integrate the knowledge the student
has gained from the prerequisite courses. Putting all the components of
software engineering into practice in a project course requires the stu
dents to make hard decisions on what to leave out, where to put em
phasis on what is tried, how to track product development quality and
quantity and project time, and how to deal with other team members in a
world of external demands and internal interactions.

The project course depends on the prerequisite courses; there is no
time during the project course for lectures on software engineering
methods. Project students often have to gain depth in the project ap
plication area during the course.

The central pedagogical challenge is to ensure that the academic ex
ercise, sized to a team of three to seven students, and a time span of
ten to thirteen weeks, scales usefully to industrial practice.

www.manaraa.com

236 Experience with SE Project Course

The Students

The attitude of the students is a critical factor in the success of any
particular project course. The students all have industrial software
development experience before starting the MSE program. That fact,
together with prerequisite courses, ensures that all students are

prepared to contribute. Grades are typically split into a common grade
awarded to all members of the team and an individual grade awarded to
each member. The team grade is weighted heavily (for example, 70%)
in computing the final grade for each student. The planned result is to
reinforce the team concept by demanding that success of the team is
essential to the success of the individuals in it. This is in contrast to the
Software Hut approach where motivation is supplied by a profit and loss

game [53].

Each student must deal with the quality vs. quantity tradeoff. Student

teams have been consistently overambitious, setting goals that are un
attainable within the constraints of time, skill, and staffing. It is important

to keep the scope of the exercise within bounds without sacrificing
quality, the achievement of which is the central reason the students
have entered the Wang Institute MSE program.

The C-Kit Projects

The author of this paper has recently supervised a sequence of project

courses under the general title of C-Kit. Each student team has built
some component of a compiler (record handler, lexer, screener, parser,
decorator, abstractor ...). All have been built under UNIX™1 on a Digital
Vax 780.

Each'C-Kit project has been designed to keep the deliverable software
to a minimum, sufficient only to exercise the software engineering

process. Typically, this leads to two hundred pages of process-related
documents and a few hundred lines of delivered code. (In passing I add

a defensive note in response to questions from my earlier reviewers.
This is surely not the way to get a few hundred lines of code written;

1UNIX is a trademark of AT&T Bell Laboratories.

www.manaraa.com

McKeeman 237

rather it is a way for my students to learn how to deliver larger systems,
without letting the C-Kit coding exercise get in the way.) The emphasis
on the quality of the software engineering process leads to products that
are reasonable input to later project courses where extensions or in
tegration tasks may be assigned. It is possible that C-Kit deliverables
will be reworked to become Wang Institute supported packages.

Software Engineering Process Guidelines

Some project pre-structuring is available to the student team. This pre
structuring resides in style manuals, directory structures, document
templates, and anything from any previous project courses. This collec
tion is referred to here as the Software Engineering Process Guidelines.
A collated document with this title will be available for Wang Institute
students in the near future.

Models

Many different models have been tried for project courses at Wang In
stitute. It is easier to understand the model currently being used in C-Kit
as one of a larger set of possibilities. The variables are product, produc
tion, and pedagogy.

Product Models

Before one can choose an engineering approach, one must have some
idea of the task to be performed. This is called the product mode\.

Where the project lies between research (R) and development (D) is the
most important parameter. Projects at the R end of the R-D scale re
quire the team to discover much of what they need to know during the
project itself. Typically a project ends up R oriented when some new
technical application is to be attempted. Less often the team chooses to
experiment with the engineering process itself. R projects start slow
and have less time for process-related efforts. The effect is to risk the
worst of industrial practice. Students under pressure can Slip due dates
and launch heroic hacking sessions at school as well as at work. On
the other hand both the instructor and students are often motivated to
new heights by an exciting challenge [14].

www.manaraa.com

238 Experience with SE Project Course

Projects at the D end of the R-D scale are low risk; someone on the
team knows knows how to solve all the technical problems that are go
ing to arise. D projects are much more predictable and are more likely
to leave behind a usable legacy.

A second parameter is the degree of completeness of the project with
respect to the product life cycle. A project that starts with requirements
and ends up with delivered code is complete. One that does only part of
the process (say a specification, or a design) is partial.

A third parameter is the independence of the project from earlier work
on it. A new project is independent. An enhancement project is on
going.

For C-Kit projects, the typical characterization has been:

R-D Research I---------------------x--I Development
Cop Complete I-x----------------------I Partial
1-0 Independent I-x----------------------I Ongoing

One C-Kit project was much closer to the Research end of the R-D line.
A planned C-Kit front-end integration project will be near the Ongoing
end of the 1-0 line.

Production Models

There are several software production models in use, but none has
gained universal acceptance in industry. This is reasonable because
different kinds of problems require different kinds of approaches. It is
also unreasonable because models known to be ineffective continue to
be used.

Production models, when introduced to the profession, are presented
whole. That is to say, an author of a production model typically presents
a working system, usually encompassing the entire product life cycle.
Within such a whole model there are two distinct concepts: the activities
to be performed, and the ordering of those activities. The activities are
closely related to the deliverables. Often an activity described within
one model can be employed in a second model, replacing the

www.manaraa.com

McKeeman 239

analogous activity in the second model. The models relevant to this
course organization are:

• Boehm is the spokesman for the ''waterfall model" [12].
The activities are producing requirements, functional
specifications, designs, code; unit testing, integration, and
system testing; validation and verification, acceptance and
delivery. The ordering is sequential, with successive ac
tivities partially overlapped. Because the waterfall model
requires the early steps to be especially free of mistakes
while it is well known that early in the project is just when
ignorance makes mistakes most likely, some authors have
objected to its use [23].

• Parnas advocates a document driven model [77]. Good
configuration management and information hiding are major
features of this model. Team members are required to
rework the defining documents before fixing inadequacies
discovered during implementation. In the most elaborate
form of the method, change permission is controlled by an
El?'ternal bureaucracy. This would be typical of a large
government-funded application.

• Basili and Turner propose Iterative Enhancement [7]. Itera
tive enhancement is a sequential model. In stage 1, a sub
set of the final functionality is built. Based on what was
learned in stage N, stage N+1 is planned and carried out
with increased functionality. In the simplest form of iterative
enhancement, stage 1 is a prototype, and stage 2 is the
final product.

A combination of the waterfall, document-driven and iterative
enchancement production models is used for C-Kit projects. This new
model may be visualized as a sequential pair of highly overlapped,
nearly vertical waterfalls - reminiscent of Yosemite Falls.

There are two complete stages. At the beginning of each stage, each of
the waterfall activities is started almost immediately. Parnas' format for
document definition is the starting point for deliverable documents [50].
The team must be alert to moving material from one deliverable to
another when such movement increases a separation of concerns. As

drafts of the conceptually earlier waterfall documents become available,
some rework of the later, dependent material is expected. ,The first
release of the completed deliverables is during week 6 or 7 (the end of
stage 1).

www.manaraa.com

240 Experience with SE Project Course

The work in stage 2 proceeds with increased certainty as a result of the
stage 1 experience. Stage 2 is planned to take the remainder of the
available time, and is characterized by increased functionality, rework of

process deliverables from stage 1, and the preparation of a public
presentation of the results.

time in
weeks--..

Stage 1 Deliverables
Requirements Spec
Project Plan
Functional Spec
User Reference
V & V Plan
Design Spec
Implementation
Code Inspection
Tests
Midterm Report

Stage 2 Dellverables
Requirements Spec
Project Plan
Functional Spec
User Guide
V & V Plan
Design Review(s)
Design Spec
Maintenance Guide
Implementation
Tests
Final Report
Legacy Prepared

11111
1 2 3 4 5 6 7 8 9 0 1 234

X>OOOO<
XXX X X
XXXXXXXXX

XXXXX
XXX

X>OOOO<
xxxxxx:

X
XXX

XXXX

XXX
XXX X X

XX>OO<XXXXX
XX>OOOO<X
XXX

XX XX
XX>OOOO<X

XXXX
XXXXXXX

XXXX
XXXX XXXXX

XX

Figure 1. Double Waterfall Model

Typical C-Kit Project

Pedagogical Models

The driving pedagogical principle is to optimize the gain in student com
petence and confidence in conducting software development projects. It
is acceptable for the team to fail to meet simulated industrial goals if the
experience supports the academic goals.

A product-process tradeoff is made at the beginning of the project - the

team may emphasize the delivery of the software product or emphasize

www.manaraa.com

McKeeman 241

the process. A product-intensive project tends to produce more code,
and also tends to get into "industrial" kinds of trouble such as deadline
slips, needing to reduce functionality at the last moment, and giving
short shrift to documentation and testing. It is better to eliminate some
tasks (that is, reduce the complexity of the production model) at the
outset of a product-intensive project course rather than risk doing them
poorly. Deliverables from a process-intensive project are usually profes
sional in appearance. The content, however, may suffer. The phrase
"full of sound and fury and signifying nothing" gives the flavor, although
exaggerated. The instructor needs to guide the team into a safe middle
ground.

Process in a project course may not lead to deliverables. A student
delivered lecture on revision control, or programming standards, may
affect other deliverables but be associated with none. The instructor
needs to ensure that the students carrying out "invisible" contributions
are recognized and rewarded.

External Participants

To enhance the industrial simulation, various supporting roles are
played for the project team. Often another member of the Wang In
stitute community, or someone from industry, is willing to playa support
ing role. When the instructor plays such a role, he wears hats. The
purpose of the hats is to ensure the team members react to the role,
rather than to the real person. On occasion the students also wear hats
to emphasize their roles when they are outside the expected pattern of
team interaction (trainer, reviewer, etc.).

The external participants must have knowledge in the subjects required
by the roles detailed below. In addition they must have the time to
devote to student interaction, a perspective, a sense of humor, and a
sense of the dramatic sufficient to make their roles "live."

Instructor

The instructor is outside the project, taking responsibility for the
pedagogical experience. Except that a successful industrial experience

www.manaraa.com

242 Experience with SE Project Course

is good for the self-confidence of the team, it is irrelevant to the course.
For example, if the instructor believes that the team will gain an impor
tant insight thereby, risk-taking that would be unacceptable in an in
dustrial project may be permitted. Similarly, a shouting match during a
technical review may not be immediately quashed by the instructor if
letting it play itself out will lead to a rich educational experience for some
of the participants. The instructor wears no hat.

VP for Software

The VP is the authority figure on the project. The VP wears an in
timidating dark blue hat, isn't knowledgeable about software, and is
prone to Draconian measures. The team needs the signature of the VP
for all deliverables and is careful to approach the VP only when the
document to be Signed is something the team is willing to stand behind.
The instructor normally plays the VP role.

Customer

The customer represents the organization wanting the product. The
customer has been played by the instructor, another member of the In
stitute, or by a "real" outsider from industry. The customer interacts with
the team through periodic progress reports to ensure the correspon
dence between requirements and product. The earlier a divergence is
detected, the less trouble it will cause.

Technical Consultant

Each project requires some technical knowledge beyond what the stu
dents bring to the course. A role of "technical consultant" is provided to
fill the need. The consultant is ever willing to give advice but has no
decision-making power. When played by the instructor, the consultant
wears a gaily checkered hat with CONSULTANT written on the hatband.
This is intended to emphasize to the students that they can safely ignore
the technical advice (and not be worried that the consultant is really the
instructor and in charge of grades). Occasionally the ground rules in
clude the possibility that the VP for Software can also call on the tech
nical consultant for advice.

www.manaraa.com

McKeeman 243

Technical Editor

Some projects have access to a professional technical writer who red
lines draft documents according to the standards of technical writing.
Like the technical consultant, the technical editor is willing to give advice
but has no decision-making power.

Reviewer

Reviews of project deliverables often require a knowledgeable outsider,
either as reviewer or review leader. The instructor is usually unable to
play this role effectively, because a hat does not really hide authority
and reviews are prone to emotional pathologies. Other students or

members of the technical staff or outsiders can be invited to participate
in reviews [35].

Project Leader (optional)

Rather than assigning the watered-down project coordinator role to a
student team member, one can bring in an experienced project leader
from outside the team. Experience to date indicates such a project
leader must:

• Be more skilled than the rest of the team in software en
gineering methods.

• Have no personal stake in the product (e.g., not be the
"customer" in disguise) .

• Have a basis for authority of position (e.g., a say in the final
grades) .

• Have time to attend al/ project meetings.

Project Librarian

The librarian is responsible for documenting meetings, keeping the
hardcopy files straight, and collecting materials for presentations. The
project librarian position is not popular with the team members. Often
we are able to get a less experienced graduate assistant to play this role
for a specific project. This alternative has the side effect of preparing
the project librarian for later participation as a student in project courses.
The librarian of the Chief Programmer Team has, of course, other

www.manaraa.com

244 Experience with SE Project Course

duties, some of which are allocated to team members in the course
organization given here [3].

Secretary

The volume of the materials produced, and the need for multiple copies,
makes a secretary desirable. The alternative is for the students to do
secretarial work in place of other more instructive project work. At
Wang Institute, the faculty secretarial staff often fulfills this role. The
task is continuous from the start of the project but most intensive just
before project presentation.

Project Course Dellverables

There are two stages to each C-Kit project. For stage 1, the require
ments are minimal. The team nevertheless carries an entire life cycle to
completion during the first half of the time allotted to the project course.
One team member is responsible for each deliverable. For each
responsible team member, a second team member is assigned as
backup and assistant. The responsible team member is not expected to
do all the work for the deliverable; several team members may be as
signed to work on it. Not every member of the team is expected to work
on every deliverable.

The assignments of tasks may change after stage 1 is complete. Each
team member is encouraged to work both in an area where they feel
special expertise and another area where they may feel the need to
strengthen skills.

At the beginning of stage 2, the team and customer negotiate an in
creased functionality for the product. All deliverables are then reworked.

Often most of the stage 1 deliverables carry over directly to stage 2.

The categories of deliverables are specifications, verification and valida
tion, implementation, and documentation. The details follow.

Specifications

There are three specification documents: requirements, functions, and

www.manaraa.com

McKeeman 245

design. Writing specifications is often difficult for the students. One
specific problem often encountered in preparing the specifications is that
material is needlessly repeated in several separate documents. The
details below supply the guidelines intended to minimize the duplication
of material in specification documents.

Requirements Specification

The requirements document is usually provided by the instructor in draft
form on day 1 of the project. The team is responsible for producing the
final form and getting the signature of the customer. The purpose of the
requirements document is to define the product to be developed in a
way that is understandable and satisfactory to both the customer and
the developer. A requirements document exhibits the following
properties:

1. Each requirement is able to be validated ("met" or "not
met").

2. It is in the language of the customer (no jargon, informal).

3. It contains no adverbs ("very", "fast", ...).

4. It is complete (no implicit requirements).

5. It includes requirements other than function (e.g. main-
tainability, performance).

6. It is explicit about constraints ("must use the VAX").

7. It is brief and readable.

8. It is signed by both customer and developer.

"Complete" in (4) above does not mean final. A requirements specifica
tion can be changed during the project by renegotiation but not by
unilateral action by the development team. Periodic progress reviews
keyed to the requirements document are the normal management con
trol to insure that the team understands and accepts the task as defined.
As a practical matter, the instructor monitors the team meetings and
correspondence.

Functional Specification

A functional specification defines the functions to be supplied to the
user, but not any invisible internal functions. The functions supplied
must fulfill the requirements. The functional specification does not ad-

www.manaraa.com

246 Experience with SE Project Course

dress how the functions are going to be achieved, although the
specification writer generally has one (feasibility) model in mind when
proposing the functions. Performance requirements for, and interfaces
to, the user-visible functions are appropriate for this document. This
document can be formal; often algebraic specifications are attempted.

Design Specification

A design specification describes how the product is to be built. It in
cludes module definitions, inter-module interfaces, data structures, in
variants, pre/post conditions, exception response, and algorithms2. The
interface descriptions are most often procedural. It is appropriate to use
implementation language notation to describe data structures, proce
dure headers, and the content of module banners. It is not appropriate
to use implementation language notation to describe algorithms.

The design is a primary input to the work breakdown structure needed
for the project plan, although timing constraints often force the planner
to lump all implementation activity into an undifferentiated blob for the
first few issues of the plan.

In industry, a design will often have a good deal more structure
(architectural design, detailed deSign, pseudo code) than used in C-Kit
projects. That level of detail has proven to be excessive for the project
course.

Verification & Validation (V&V)

The V&V effort in a C-Kit project course has three components: tech
nical reviews, the test plan and the test execution. (No team has at
tempted a proof of correctness to date.) Some related activities are
carried out as collateral duties and do not result in deliverables.

Technical Reviews

Every project course should include at least one formal technical review
[35]. It is most often a design review, but on occasion it has been more

2A hidden assumption here is the expected use of an imperative language such as Ada
orC.

www.manaraa.com

McKeeman 247

appropriate to have a code review or a review of some other deliverable.
Inspections, focused on specific guidelines, have proven to be the
easiest to conduct within the experience limitations of the students and
the time constraints of the course. Walkthroughs are more difficult for
inexperienced teams; it is too easy to get deflected onto side issues.
Wide-ranging technical reviews are rarely successful in a project course
context, partly because the accelerated schedule of the project makes
the reviewed material obsolete before the review team can assimilate it
and prepare for the review itself.

Test Plan

The testing group must validate the software with respect to require
ments specifications, and verify the software with respect to functional
specifications [8]. The test plan is directed at the final integrated
product. The test plan does not include any unit testing unless unit
testing is an essential component of the method for testing the in
tegrated product. The testing activity is often expressed by command
scripts and data files so that regression testing and test-set enhance
ment are automated. In C-Kit projects, we insist that correct results are
never seen twice by human eyes. Once seen and approved, they are
moved to an "approved" file and checked by file differencing thereafter.

The required tests are:

1. Smoke test (one path through the product).

2. Functions test (reasonable use of each function tested).

3. Limits test (every known or suspected limit n is tested at
n-1, nand n+ 1).

4. Problem guesses (tests where trouble can be expected:
function interference, boundary cases,
machine/application mismatch).

5. Error response (reasonable response to violation of
preconditions and other undesired events).

Test Execution

Each release of the product is tested; test failures are documented and
the project coordinator (or leader) is notified. Conflicts over test inter
pretation are placed on the agenda for the next project meeting.

www.manaraa.com

248 Experience with SE Project Course

Implementation

A code deliverable consists of source modules that have been unit
tested and integrated. The size of the code is deliberately kept small (a
few hundred lines is optimal) by vigorous subsetting of any ambitious
requirements. The assumption is that each deliverable is complete, cor
rect, and meets all quality criteria - small but beautiful. All code is
written with the two-stage delivery already in mind. Where possible,
stage 1 delivered modules incorporate stage 2 hooks to simplify the
planned extensions.

Documentation

Documentation specifically designed for the users and maintainers of
the product include the manuals and the project report discussed in the
following paragraphs.

User Tutorial

The user tutorial is designed to be read from front to back before, and
during, a user's first experience with the software. It need not be com
prehensive but it must leave the reader able to use a subset of the
capabilities of the product and ready to continue using the software
depending only on the User Reference.

User Reference

The user reference is designed for ease of look up. It is structured
either by function or alphabetically. Tables are preferred to prose. It
has an index and a glossary.

Maintenance Manual

The maintenance manual is intended to ease the task of systems
programmers maintaining the delivered software for the customer, and
for guidance in rework and enhancement by developers who may work
on the software later. This manual gives an overview of the software,
keying on the deSign document, installation, and software-change direc
tives. Expected changes and the hooks provided are listed. An un
anticipated change, requiring an extensive understanding of the
software and substantial rewrite, is probably best carried out as a new
life cycle; in effect, a stage N+ 1 of the iterative enhancement model. In

www.manaraa.com

McKeeman 249

the Parnas production model, for example, the maintenance documen
tation is identical with the design documentation [50].

Project Report

The project report includes the deliverables as well as retrospective
statements by project participants: in particular, it includes the annotated
and edited mail messages and memos, project statistics, customer
evaluation, and presentation aids.

Collateral Assignments

In addition to the deliverable-related tasks of the project, students must
do other tasks necessary to carry a project to a successful conClusion.
These tasks, called collateral assignments, can be characterized as
overhead, administrative, or housekeeping. In a lean-and-mean in

dustrial world, these tasks are often unmentioned and often done badly.
Our view is that they must be done well, and it is better to plan for them
and carry them out efficiently.

Depending on the size of the team, each project member typically has
more than one collateral assignment.

Project Coordinator

The project coordinator, a student role, is a watered-down version of
project leader. The coordinator is responsible for:

• Publishing the Software Engineering Process Guidelines for
the project.

• Seeing that meetings are scheduled, attended, and docu
mented.

• Periodically checking on, and publishing the status of, each
deliverable.

• Scheduling customer/team meetings for progress reviews.

• Ensuring that problems arising between team members are
promptly dealt with (by personal action or by invoking
higher authority).

There are several reasons why the above duties are limited. Most im
portant is that singling out one student as "leader" is divisive. When the

www.manaraa.com

250 Experience with SE Project Course

position is down-graded to administrative chores (as above), it becomes
about as attractive as the other collateral duties. Also, among a group
of students, there is rarely one that is sufficiently knowledgeable and
mature to exert the necessary technical leadership; thus, the leadership
role is transferred to the supervising faculty member or some other non
student outsider.

Planner

Early in the project a description of deliverables, a work breakdown
structure, milestones, and project constraints are established. The plan
ner takes the lead in ensuring that decisions are made. Then the plan
ner collects the information and presents it in a project plan. The project
coordinator uses the project plan to check team progress and the plan
ner periodically reissues the plan with progress-to-date marked.
Changes in the plan by team agreement or by imposition by higher au
thority are reflected back into the plan and it is reissued. Work break
down structure tools and PERT tools are sometimes used.

Trainer

Often, despite the common background of the student team members,
they are not all at the same skill level in some process necessary to the
project. A team member is chosen to organize a tutorial on the required
topic. The organizer is allowed to draw on external participants, in par
ticular, on the technical consultant, for the actual presentation.

Directory Manager

The directory manager is responsible for the integrity of the common file
spaces of the team.

Under UNIX, it is convenient to establish a project directory and sub
directories corresponding to the various team activities. The team mem
bers are directed to constrain their use of the common space by rules
intended to enhance team efficiency and preserve information. They
are also constrained to do all project work within the common directory.
Each team member has a personal subdirectory for workspace.

www.manaraa.com

McKeeman 251

The rules are published in a Software Engineering Process Guidelines
established early in the project (usually a modification of a previous
standard). Specifically, rules are given for the naming of files and direc
tories (case conventions, name length, etc.), the content of README
files, and the association of team member activity and the directory con
taining the results. The directory manager i~ not respo_nsible for the
contents of any files representing deliverables.

The directory manager periodically examines all the directories. Devia
tions from the published guidelines are brought to the attention of the

owner of the file.

Document Manager

The document manager is responsible for the form and style of
deliverable documents. In addition, the document manager is alert to
information needlessly appearing in more than one document.

Team members produce hardcopy deliverables at intermediate stages
of completion, usually as part of a formal or informal review. The docu
ment manager checks all presented hardcopy against the relevant
Software Engineering Process Guidelines and brings any deviations to
the attention of the author.

Where the deviation involves document contents - that is, where
material has appeared in one document but apparently belongs in
another - the document manager arranges for a discussion between
the authors of the conflicting documents to resolve the conflict. The
document manager does not inspect documents looking for missing
technical material, because missing material is usually just a reflection
of wOrk-in-progress.

The document manager is also responsible for ensuring that all sub
mitted documents contain information necessary for configuration con
trol. This is discussed in more detail by Gill [47]; each document must
be viSibly identified by status, file location, version number, and date.

www.manaraa.com

252 Experience with SE Project Course

Code Manager

The code manager is responsible for the form and style of deliverable
code.

The code manager is responsible for inventing specific program iden
tifiers used by more than one team member (for example, for external
procedure names and interface variables). The objective is consistency
across the project.

Team members are encouraged to submit draft code for the code
manager to inspect by submitting hardcopy, sending electronic mail, or
specifying file location. The code manager checks the submittal against
the coding rules (naming conventions, banner contents, paragraphing
style, etc.), which are published in the Software Engineering Process
Guidelines. The coder is notified of any problems, providing the coder
with the opportunity to correct them before an official release is required.

Code cannot be released until the code manager certifies that it meets
the guidelines.

Statistician

The project statistician is responsible for collecting and presenting the
project activity record.

The data collected by the statistician includes the amount of time spent
by each team member and on each activity. It may also include infor
mation on page, line, and word counts, bug tracking, or other product
completion measures. Time cards, or an automated version giving the
same information, must be designed and put into action almost im
mediately at project initiation. The information normally appears during
the retrospective portion of the final presentation.

Mail Manager

Where electronic mail or memos are used for communication within the
project, a historical record is preserved by the mail manager.

www.manaraa.com

McKeeman 253

At a minimum the mail manager sorts communications into the ap
propriate categories and cross references where necessary. The mail
manager may institute guidelines for mail headers so that the sender is
required to state under what category the item is to be archived.

legacy Manager

The legacy manager preserves the machine readable form of the final
version of the deliverables for posterity.

The task includes the preparation of a subdirectory within the project
directory, moving products into it as they are completed, and deleting all
other files and directories shortly after the completion of the project.

Presentation Manager

The presentation manager is responsible for organizing presentations of
the project and product.

A midsemester project presentation is given to the instructor alone.
During this presentation, the instructor gives guidance to the team as
they prepare for a public presentation at the end of stage 2.

The tasks of the presentation manager are:

• Organization of the presentation.

• Assigning presenters.

• Checking the presentation materials for accuracy and con
sistency.

• Scheduling the presentation time and space.

• Inviting the audience, always including the "customer,"
other students and faculty, and sometimes outside obser
vers from local industry.

In addition, the hardcopy form of the presentation, usually several
hundred pages of organized project materials, must be collected, col
lated, copied, bound, and distributed. At Wang Institute, the team mem
bers, the instructor, other requesting faculty, the department archives
and the library all get copies. Extensive secretarial support is provided.

www.manaraa.com

254 Experience with SE Project Course

Software Development Environment

All C-Kit software has been developed under UNIX. It became clear
during the first C-Kit project that the students were consuming valuable
time establishing their workspaces and procedures. The difficulty was
reduced semester by semester, by the increasing availability of legacy
directories left over from completed project courses. The advantages
supplied by the legacies, however, had the ill effect of inviting slavish
copying of mature documents without the new author understanding the
significance of some of the contents. The results were not always
gratifying and required an inordinate amount of instructor time to correct.

The Institute supplies a project environment building facility to solve this
problem. The builder provides a project directory structure and popu
lates it with tools, document templates, and guideline documents. All
work done by the team on the project is done within this directory struc
ture. The builder, in its dormant form, resides as a shar file [79].3 The
details of a version of this environment, of considerable relevance to this

paper, are documented by Gill [47].

The most important aspect of the project tools is that all project
deliverable documents, using existing templates, automatically an
notated with author(s), date and version, are kept with their revision his
tory under rcs [96]. The rcs check in and check out actions use project
defined commands that ensure the integrity of this information. A typical
use pattern includes a locked check out into a workspace directory,
modification, check in, and draft printing.

The team must be skilled in the use of general tools as well as the use
of project specific tools available in the environment. To some extent,
the course prerequisites provides the initial familiarity; more detailed in
formation is available in the tools seminars that are periodically given by
the Institute professional staff outside the courses. Sometimes ad
ditional instructional time is necessary during the project. When this is

3Shar collects files and directories into a text file suitable for electronic transmission.
The shar file is unpacked by running it as a Bourne shell script.

www.manaraa.com

McKeeman 255

so, team members are assigned "trainer" collateral duties and time is

allocated in the project plan.

The first environments grew naturally during projects (January 1982 to
present). Professor Nancy Martin made available to the Institute com

munity "A Short Discussion of Project Courses," a comprehensive col
lection of project course materials (January 1~84). Variqus C-Kit
projects drew on this material. An elaborate environment was set up by

Tim Gill for the Wang Institute Static Analysis Project (October 1984). A
common environment was set up for the faculty staff (early 1985). A

project course entitled meta-project (September-December 1985) com
bined these experiences to build the first exportable project builder. The

expectation is that several versions, each specialized to a particular
style of conducting the project course, will be available to,.student teams
at Wang Institute, and possibly available to outsiders as Institute

supported products.

Summary and Evaluation
This paper has presented a comprehensive description of one way of
organizing and presenting a project course. The components are well
trained, advanced students, a minimal product, an elaborate engineer

ing process, good tools, and task aSSignments for external participants,
deliverables and collateral duties.

It works. No one component is essential. It is usual to plan to experi

ment with some changes each time the course is run. The main deter
minant of success, in addition to the details laid out above, is the atten
tion paid to the project and team by the faculty supervisor. Enthusiasm

is contagious. A secondary determinant is the expectation that the

product may someday be used, and that it will be looked to for ex

emplary practice by teams to follow. A third determinant is an element
of risk; the mountain must be worthy of climbing. A measure of the
success is the cohesiveness and mutual regard of the team at project

end and beyond.

Serious problems can arise when equipment fails at a critical moment or
when a team member fails to produce, or when the problem turns out to

www.manaraa.com

256 Experience with SE Project Course

be beyond the time and energy of the team. There is little time to
recover - at best the team falls back to a prepared reduction in
functionality.

A project environment builder, containing much of the accumulated lore
of the C-Kit projects, has been constructed. Here lies the hidden
leverage of this kind of project course. Each year the students have
ever improved examples and tools upon which to build. Information on
the availability of the project environment for external distribution can be
obtained by writing to the Wang Institute Faculty Technical Staff.

Acknowledgments

Several people contributed to this work. Some of it is traceable to Dr.
Wang's original vision of the Institute and its articulation by the Institute
National Academic Advisory Committee. The faculty and students who
have struggled together to give meaning to the project courses will
recognize the presence of good ideas that evolved in their courses, and
the absence of bad ideas that they paid the price to explore. Dr. Nancy
Martin contributed a depth of software engineering knowledge, the
courage to try a variety of models, and finally a useful collation of
materials which marked the beginning of the C-Kit efforts. The Summer
84 C-Kit team contributed the first consistent set of reusable materials.
A member of that team, Tim Gill, took a research position at the Institute
after graduation and further developed the project environment.
Another alumnus, Dan Ligett, from his staff position in the Wang In
stitute Software Environment activity, and software specialist Sid
Shapiro contributed much of the expertise needed by the Summer 84
team. Gill and Jim Kirby undertook the guidance of a student project to
provide the first project environment builder. Several colleagues, most
notably Susan Cardwell, Richard Fairley, Tom Fitzgerald, Jim Horning,
Nancy Martin and David Weiss, made many helpful suggestions on the
draft of this report. To all I am grateful.

www.manaraa.com

McKeeman

Appendix I

Historical Log of Project Courses at Wang Institute

COURSE INSTRUCTOR

Winter 1982
WICOMO Bouhana
(implementation of Boehm's COCOMO model)

Summer 1982
Graphics Package Specification McKeeman

Fall 1982
WISK Registration I Martin
(a registrar's package for the Wang VS computer)

Winter 1983
Software Design Language
WISK Registration II
WICOMO Enhancement

Summer 1983
Expert Systems
Software Design Language
& Processor

Fall 1983
A Bibliography Manager

Winter 1984
Prototype Transformation System
UNIX Instrumentation Tools
C-Kit Lexer

Summer 1984

Fairley
Martin
Bouhana

Martin

Fairley

Gerhart

Ardis
Bouhana
McKeeman

C-Kit Screener McKeeman
WICAL in Prolog Gerhart
(an institute-wide calendar database)

Fall 1984
YACP
(a table generator for a C lexer)

Martin

257

www.manaraa.com

258

Winter 1985
C-Kit Parser
Referee Management System

Summer 1985

Experience with SE Project Course

McKeeman
Bouhana

TEDGEN Ardis
(a syntax-sensitive editor in Emacs)
Prototype & Feasibility Velasco
On-Line Survey Systems I Bouhana
On-Line Survey Systems" Perlman
C-Kit Decorator McKeeman

Fall 1985
Meta Project
(a project course environment
builder)
Tool for JSD
PM-KIT
(a project management tool)

McKeeman

Fitzgerald
Velasco
Fairley

www.manaraa.com

McKeeman 259

Appendix II

Recent C-Klt Project Experiences

The four projects below were run within the structure described in this

paper. An outline of the deliverables and retrospective comments are
given for each.

C-Kit Lexer

Semester: Winter 84 (13 weeks)

Team: Robert Marion. Susan Stefanec. Ephraim Vishniac

Reports: project report. includes draft requirements (1 p)
requirements (4 p). project presentation materials (25 pp)

TOTAL 30 pp.

Reports - Stage 1 :
project plan (9 pp). functional specification (11 pp).
test plan (13 pp). design specification (9 pp).
design specification (screener stub) (5 pp). design
specification (record handler stub) (5 pp).
Stage 1 status report (6 pp).

TOTAL 58 pp.

Reports - Stage 2:
project plan (8 pp). requirements (User Manual) (4 pp).
decision analysis for added functions (4 pp).
functional specifications (13 pp). test plan (9 pp).
design specification (5 pp). change specification (3 pp),
user manual (29 pp). project notebook (9 pp). memos (6 pp).

TOTAL 90 pp. (largely derived from Stage 1)

project code (deliverable. tests. stubs and drivers) (39 pp),
output (19 pp).

TOTAL 58 pp.

GRAND TOTAL 236 pp.

www.manaraa.com

260 Experience with SE Project Course

Retrospective:

The students delivered a lexer for the C programming language. The

input was C program text; the output was a sequence of lexemes, con

taining the isolated text and associated information (what kind of

lexeme, where found in input file, ...). The performance of the lexer set
a standard for later project courses. The details of lexeme passing re

quired a new concept - partially completed lexeme - which had to be

added to the interface design in stage 2.

C-Klt Screener

Semester: Summer 84 (10 weeks)

Team: Susan Cardwell, Edmund Fung, Timothy Gill, Jim Haungs, Daniel

Keller, Penny Parkinson, Ray Tackett

Reports - Stage 1 :

document standards (5 pp), project plan (12 pp),
weekly Gannt charts (5 pp), requirements (5 pp),
functional specification (8 pp), design (12 pp),
QA plan (6 pp), user manual (6 pp), code (24 pp),
presentation materials (22 pp), document template (2 pp)

TOTAL 107 pp.

Reports - Stage 2:

document standards (5 pp), project plan (12 pp),
weekly Gannt charts (6 pp), requirements (5 pp),
functional specifications (15 pp), design (8 pp),
QA plan (7 pp), user manual (9 pp), code (50 pp),
test data and results (17 pp),
presentation materials (34 pp), document template (4 pp),
draft requirements (5 pp), administrative materials (74 pp),
directory structure (4 pp), retrospective (10 pp).

TOTAL 264 pp.

GRAND TOTAL 371 pp.

www.manaraa.com

McKeeman 261

Retrospective:

The students delivered a screener for the C programming language.
They completed an algebraic specification for the screener and did an
elaborate job of testing. The performance requirement was that the
lexer-screener pair had to be at worst twice as slow as the (existing)
lexer. The emphasis on document standards was an interesting
development - strongly affecting later projects.

C-Kit Parser

Semester: Winter 85 (13 weeks)

Team: Courtney Claussen, Ira Diamant, George Pfeiffer, Susan Trager,
Allen Yen

Reports - Final Report Stage 2:

project plan (18 pp), requirements (5 pp),
functional specification (~3 pp), design (7 pp),
V&V specification (30 pp), user manual (8 pp),
memos (25 pp), UNIX based test environment (14 pp),
meeting notes (18 pp), presentation materials (44 pp),
retrospective (4 pp)

TOTAL 196 pp.

Source Code TOTAL 150 pp.

GRAND TOTAL 246 pp.

Retrospective:

Stage 1 delivered a working parse tree builder for a small subset of
C. Stage 2 delivered the same for most of C. This resulted in about
5000 lines of C code (far too mUCh). The quality of the result was insuf
ficient for later use, partly because of the excessive size of the task, and
partly because of an error in the requirements (lay the fault to the
consu~ant). Testing was a major consumer of team effort and was
severely cut back for stage 2.

www.manaraa.com

262 Experience with SE Project Course

C-Kit Decorator

Semester: Summer 85 (10 weeks)
Team: Kyle Geiger, David Lui, Steve Shaw

Reports - Stage 1 :
project plan (8 pp), requirements (4 pp),
functional specification (9 pp), design (7 pp),
QA plan (6 pp), project review summary (6 pp),
presentation materials (33 pp), meeting notes (13 pp)

TOTAL86pp.

Reports - Stage 2:
project plan (8 pp), requirements (5 pp),
functional specification (10 pp), design (7 pp),
QA plan (5 pp), presentation materials (33 pp),
meeting notes (8 pp)

TOTAL 71 pp (rewritten stage 1 materials were more concise in stage 2)

Source Code 60 pp.

GRAND TOTAL 227 pp.

Retrospective:
The students produced a program that, given a parse tree for a C

program, would remove all declaration nodes and decorate all identifiers
(terminal nodes) with the corresponding declaration. This is one way to
do symbol table processing. The project took several weeks to get off

the ground because neither the team nor the consultant knew exactly
what was wanted. The project was well towards the R end of the R-D

scale. Delivery was achieved by vigorous subsetting of the C language.
(A fundamental design error in the C-Kit parser was detected causing

the parser to be sent back for rework.)

www.manaraa.com

Software Engineering Project Laboratory:
The Bridge Between University and Industry

Richard H. Thayer
California State University

Leo A. Endres
Atkinson System Technologies Company

Abstract. The study of computer science, which concentrates pro
gramming languages, compiler construction, and operating system
courses, does not adequately prepare an individual to build large
software systems. This paper describes a two semester software
engineering laboratory course to develop a student's understanding of
software engineering and its relationship with computer science. This
laboratory course also is intended to help computer science students
make the transition from the school environment to the professional
environment. It provides an opportunity to practice software engineer
ing in an industriallbusiness situation under an engineering or product
acquisition type contract. In addition the students assume project
responsibilities broader in scope than they would normally have the
opportunity to assume in their first years of employment. Problems
and issues in instructing and managing a software engineering course
of this type are discussed.

The Teaching of Computer Science Courses

University courses in computer science typically center around the
areas of programming languages, software systems, data bases, and
the applications of programming (e.g., graphics, business applications,
engineering, etc.). The typical out-of-class assignment given to stu
dents is to write a computer program that will: (1) illustrate or show his
understanding of a computer science concept, e.g., a database im
plementation, a different programming language, an assembler im
plementation, or (2) implement a computer application in a particular
programming language, e.g., data processing problem, graph, computer
aided design. The student is given one to several sheets of paper
describing how the program is to be written. He is rarely told what
problem is being solved. This is known as a homework assignment.
The student demonstrates his knowledge of the subject by producing a
computer program in source code and output data in accordance with
specific instructions on the assignment sheet. Seldom is the student

www.manaraa.com

264 SE Project Lab: Bridge Between University & Industry

required to establish a set of requirements from only some vague under
standing of the problem; to design the system using one or more of the
acceptable design technologies; to develop a comprehensive test plan
and test specifications to test the system; and finally to make a written
or verbal report to the originator of the requirement. This is not to say
that no school does this; however, it appears to be the normal method of
doing a homework assignment in a computer science course.

The homework assignments are not large problems. Despite the many
hours students labor over terminals "hacking" at the program, they sel
dom develop a computer program with more than several hundred lines
of code. This creates a number of problems for the students after they
graduate.

Issues in Computer Science Education

The following paragraphs outline some of the issues in computer
science education.

Lack of Large System Development Knowledge

The graduating computer science student does not have a clear under
standing of how to develop a very large computer program. It is difficult
for them to comprehend that even a relatively small program of 2 to 5
thousand lines of code cannot be tackled by hacking away at the com
puter program, and that this approach will not solve a problem that re
quires a team of more than one person.

False Sense of High Productivity

The student gets a distorted viewpoint of productivity. Those individuals
who have learned only to program, typically without a complete educa
tion in computer science, believe that producing several hundred lines of
code a day is usual, because they were able to program a short com
puter program homework assignment in that length of time. They do not
realize that code is only a small part of developing a software system.

Lack of Engineering Skills

Coding is reported to take only 15-30% of the available software
development time with the balance of the effort going to the engineering

www.manaraa.com

Thayer and Endres 265

efforts of system and software analysis, software design, system and
software testing, documentation and a myriad of other things. For ex
amples, see Boehm [12]. Despite this fact, the majority of university
computer science courses are devoted only to programming and the
applications of programming. This handicaps the typical graduate in
that he has not been trained to do 70-85% of the professional tasks
assigned to him.

Lack of Communication Skills

Graduates are hired as computer science professionals, are paid a
professional salary, and work in a professional environment. Boehm
[12] references studies that show that programmer professionals spend
a large part of their time doing nonprogramming work, e.g., communicat

ing with managers, customers, and peers. In addition, as mentioned,
much of what a computer professional does involves writing technical
documents and reports. Although an English course is required of most
college graduates, this course alone does not adequately prepare them
to spend a majority of their day talking and writing.

Software Engineering Crisis

Among the major issues involving large software systems are the follow
ing: They are often late, cost much more than originally budgeted, and
frequently do not satisfy the "user," even though they may have met
their required specifications. In addition, software systems are unreli
able. They often fail to operate under what looks like normal conditions,
are difficult to modify and change when necessary, and are not reusable
later when the requirements slightly change. These failures in our ability
to deliver a software system constitute what has been called, for the last
twenty years, the "software crisis." Software engineering was introduced
in the 1970s in an effort to bring an engineering discipline to software
development and to solve and reduce the "software crisis." As far as
industry is concerned universities produce coders, not engineers, and
these people are not trained to tackle large software developments.

www.manaraa.com

266 SE Project Lab: Bridge Between University & Industry

Software Engineering Courses

Software engineering courses will reduce the shortfall in computer
science knowledge just as software engineering will reduce or eliminate
the software development issues. This paper proposes a solution to this
problem - teach software engineering courses at the undergraduate
level and require software engineering courses in a computer science
curriculum. Table 1 from Barry Boehm [15] does an excellent job of
illustrating the differences between small and large computer systems.
It dramatically pOints out that learning to program small systems cannot
prepare individuals to properly build large software systems. This paper
emphasizes an approach to teaching software engineering through
software engineering laboratory courses.

Characteristic

User
User Documentation
Error Protection
Validation
Interaction
to Consider

Cost To Modify
Specifications
Status
Version Control
Common Errors

Small Software Project

Developer
Memory Aids-Minimal
Optional Minimal
Optional Minimal
Few

Low
Optional-Minimal
In one Person's Head
Informal
Programming Errors

Large Software Project

Not the Developer
Tutorial-Extensive
Necessary-Extensive
Necessary-Extensive
Many

High
Necessary-Extensive
In Many Places
Necessary-Thorough
Programming Errors
Plus:
Interface Inconsistencies
Inconsistent Assumptions
Faulty Specifications

Table 1. Differences Between Small and Large Software Projects

What is Software Engineering:
Why is it Different from Computer Science?

Software engineering can be defined as the practical application of com
puter science and other disciplines to the analysis, design, construction
and maintenance of software and its associated documentation. All
software engineering projects produce two things: the computer

www.manaraa.com

Thayer and Endres 267

program, known as code, and the documentation necessary to operate,
maintain, and use it. This, of course, has a perfect analogy in the
hardware world, where we produce a hardware system along with its
engineering drawings and operators' manuals. Software engineering
has also been defined as an engineering science that applies the con
cepts of analysis, design, coding, testing documentation, and manage
ment to a successful completion of a large, custom-built computer
program.

What Is a Large System?

The definition of a large system changes constantly. In the early 1960's
IBM defined a large system as one with 35,000 lines of code. Today a
large system is defined as having some 128,000 lines of code [12].
Some very large systems have one to two million lines of code. For the
purpose of this paper, a "large system" is one that is too large to be
done by more than one or two people.

Conclusion: The study of small personal software development
strategies does not adequately prepare people to develop large
software products.

Hardware Engineering Applied to Software

In the late 1970s, it was proposed that software be developed and
managed in an engineering environment like hardware. Some of the
hardware development ideas that were carried over to software were:

• Project management

• Lifecycle development methods

• Work breakdown structure (WBS)

• Formal and written requirements

• Design before you build concept

• Use of written specifications, e.g., requirements specifica
tion, design specifications, interface specifications, etc.

• Milestones and reviews

Today software engineering is comprised of a number of different ac
tivities, technologies, and tools. Figure 1 [95] presents a top-level struc-

www.manaraa.com

268 SE Project Lab: Bridge Between University & Industry

ture of software engineering. This figure reflects that software engineer
ing includes software development, project management, software
quality metrics, and software maintenance.

Software Engineering

Analysis
Design
Coding
Testing

Planning
Organizing

Staffing
Directing
Controlling

Reliability

Maintainability

Usability
Flexibility
Reusability

Etc.

Figure 1. Top-level Structure of Software Engineering

SoftWare Engineering Characteristics

Software engineering is comprised of tools, techniques, and
methodologies that are used in software analysis, design, implemen
tation, and testing. Software engineering has the following characteris
tics:

• Is applicable to large, multi-person projects

• Emphasizes communications

• Reduces system and development complexity

• Uses methodologies developed through ''trial and error"

• Emphasizes the process

• Highlights visibility of progress

• Uses a systemic approach

• Is based on interdisciplinary foundation

Software Engineering Education

Software engineering is well defined and can be taught at the under
graduate or graduate level just like any other reasonably well defined
discipline. Software engineering is typically taught using the lifecycle
development model - requirements, design, coding and testing. In
many cases, all these phases are crammed into one three-hour course.

www.manaraa.com

Thayer and Endres 269

In other situations the phases are paired, e.g., analysis and design, and
taught together. In yet other courses, analysis, design, testing, manage
ment, quality assurance, etc. are taught as independent classes.
Software engineering is also being integrated into the ordinary computer
science curriculum. For example:

• One instructor does not provide the homework test data un
til 24 hours before the assignment is due.

• There is insufficient time to write the program after the data
is released.

• This requires students to develop their own test procedures
and test cases to validate their homework programs.

• Another instructor will not help debug the student's
homework assignment in source form but only from the
design.

• Only if the error cannot be found in the design will the
source be looked at.

• Design is taught in lower-division classes along with coding.

Software Engineering Laboratory

A major issue that has come up in teaching software engineering is the
attempt to make software engineering courses rigorous enough to com
pete with the coding courses. Coding is finite. When a program runs on
a computer, producing the required output, the student knows that he is
through. However, the requirements specification process is not finite.
Occasionally neither the student nor the instructor can determine when
the requirements are correct. Since it is not clear when requirement
specifications are complete, students will typically short change this ef
fort. The only positive way to solve this problem is to build (code and
test) the system and see if it satisfies the requirements. This is complex
and time consuming and can only be effectively accomplished in a
software engineering laboratory.

Software Engineering Laboratory Courses

The purpose of having a university level software engineering laboratory

course is to give the students an opportunity to practice what they have
learned. It also provides an environment in which the student can see
how the various components of a software project fit together. Depend-

www.manaraa.com

270 SE Project Lab: Bridge Between University & Industry

ing on the type of software engineering laboratory course taught,
facilities can vary from a very elaborate computer center facility to a
room with a desk, chair and filing cabinet.

The following are examples of software engineering laboratory courses
that have been culled from literature and from the authors' own ex
perience. Many of these have been tried at California State University,
Sacramento (CSUS). Some university software engineering laboratory
courses will use a combination of laboratory types, such as the team
approach with real world projects.

Everything In One Course Type

This type of laboratory course [107]completely covers software en
gineering from requirements to tested code. It is usually taught in one
semester/quarter and contains both lectures on software engineering
theory as well as a laboratory project. Many schools initiate a software
engineering course using this method. Its advantage is that it is in
expensive and quick to implement; its disadvantages are that software
engineering students get a shallow treatment of either the theory, the
project or both.

No Project Type

This type of laboratory course uses the method of a "dry lab" to teach
software engineering. The instructor will walk through a project on the
black board. Its advantage is that it is inexpensive; its disadvantage is
that the students do not get "hands-on" experience in software en
gineering.

One Class, One Project Type

This type of laboratory course [58] selects or assigns one group project
to be completed by the class during the course term. Each student or
team of students takes a different role in the project. Some students act
as project managers, others write requirement speCifications, while
others conduct tests for software quality assurance and verification and
validation on the engineering products. The advantage of this type of
laboratory course is that it enhances interaction between project mem
bers and enables the class to take on a much larger project. Its dis-

www.manaraa.com

Thayer and Endres 271

advantage is that since projects are somewhat serial in nature, the
design and the verification and validation team may be idle while the
requirements team is extremely busy.

One Person, One Project Type

In this type of software engineering laboratory co~urse [91) eaGh student
does one project individually. The advantage of this type of project is
that it goes smoother as far as the student is concerned and is far easier
for the laboratory instructor to grade. Its major disadvantage is that few
projects are accomplished this way in industry. The students need to
learn how to work with other computer professionals in building a
software system that is too big for one person alone.

Project Team Type

In this type of laboratory course, [105, 21, 91] the students are grouped
into small project teams. These are usually teams of 4-5; sometimes,
how~ver, team sizes range from 10-15 students. This increases per
sonnel "interaction problems, which increases the students' learning.
The disadvantage is that lazy or incompetent students can "hide behind"
their teammates and do little or no work for their grade.

Canned Project Type

In this project the instructor (and usually the student) knows the
"answer" to the software engineering project. The design strategies and
solutions for the project are limited. The student knows whether or not
he has done the software engineering project correctly at each stage of
the lifecycle. This laboratory is easier for the instructor to grade and
less demanding on the student. However, this type of laboratory course
does a poor job of representing a "real world" software engineering
project such as the students will see after graduation.

"Real world" Project Type

In this type of laboratory course, [64], [21] the student finds or is as
signed a small project, usually from a local business. There is no
preconceived solution; in fact, there might not be a reasonable solution
at all. This type of course maximizes the student's exposure to what he
might expect to see after graduation. It is also the most frustrating for

www.manaraa.com

272 SE Project Lab: Bridge Between University & Industry

the student and the most difficult for the instructor to grade. Also, since
the work is looked on as being ''free'' by the customers, they will accept
less than originally asked for; i.e., they will let the students "off-the

hook."

Scenario Type 2

This is a variation [17] on the canned type of laboratory course. In this
course various people, usually faculty, play different roles in a simulated
real world environment. The student determines the requirements by
interviewing the various actors/faculty. This type of project, like the
canned project, does not present the students with the surprises they
will encounter after graduation.

"Captlve Slave" Type

In this type of laboratory course the objective is to build a software sys
tem to increase the software capabilities of their university or of a faculty
member. Master and PhD students frequently fall into this category.
This has many of the features of the "real world" project in that the
project is for a "real" customer. The major problem with this type of
project is that faculty are often inexperienced customers and may do a
poor job of representing a real business; many of their projects are ex

perimental in nature, with poorly documented requirements. They have
more in common with research and development projects than software
engineering development projects.

MUlti-Semester, Large Project Type

This type of laboratory course has a very large project that requires a
large amount of student help and many semesters to complete. The
advantage here is that a much larger project can be attempted, there
fore offering a better simulation of the large software engineering project
to be encountered in real life. However, this type of laboratory course is
very difficult to manage. A bad requirements specification or a bad
design may have been done by a student who has already graduated
(and received an "A" for his share of the course). As in a non-laboratory
course, it is impossible to know if the requirements specifications are
done correctly until the system has been coded and tested. The last
students at the end of the lifecycle wind up doing more than their share
of the work and learn all the lessons.

www.manaraa.com

Thayer and Endres 273

Teaching Assistant Type

A unique variation on the project team type [58] uses graduate students
for team leaders or project managers. A graduate student with ex
perience (either in industry or from doing this job previously) is assigned
to a team of approximately five students. This has the obvious advan
tage of having an "experienced" software engineer "lead" the project.
Learning is much faster, the students make fewer non-learning mis
takes, and the projects have a higher completion ratio (which is motivat
ing to the students). The disadvantages are that the students will fre
quently sit back and depend on the teaching assistant to make all the
decisions, and the students do not have an opportunity to practice
management.

Senior Projects: California State University, Sacramento

California State University, Sacramento (CSUS), Department of Com
puter Science, has implemented a software engineering laboratory
course (called Senior Projects), which encompasses as a minimum set
the analysis, design, coding, testing and management of a real software
project. This laboratory course allows the students to produce a "large
scale" software product. The students combine and practice what they
have learned about software engineering lifecycle procedures and
methodologies taught in earlier software engineering courses. This
course is but one of several software engineering courses in the cur
riculum. Moreover, this course is required of all computer science
majors. The course objectives for senior projects can be found in Ap
pendix A.

Course Descriptions

Senior Projects is a two semester, two hour per semester course, which
encompasses a project for the development and delivery of a computer
product. It is a laboratory course designed to apply the knowledge
gained by three or four years of college study to the development of a
"real world" computer system. The course is only open to computer
science seniors. The product to be worked on is selected by the student
from industry or government. Group projects are required. The course
emphasizes the software development lifecycle: proposal writing, project

www.manaraa.com

274 SE Project lab: Bridge Between University & Industry

management planning, system requirements analysis, design, testing,
documenting, and reviewing of a computer product.

The course is accomplished in two parts. Part One, done in the first
semester, establishes the project, plans the effort, and analyzes and
documents the requirements. Part Two, done in the second semester,
contains the designing, coding, testing, and delivering of the product.
The second semester should end with the acceptance of the product by
the sponsoring organization. Course emphasis is on using the software
system lifecycle development model. Each project, no matter how
small, is expected to follow the software engineering lifecycle, i.e., re
quirements must be established before the product is designed. which
must be done before the design is coded, to be followed by testing, etc.
Even so, the limited size of the project (roughly 120 hours per semester
per student) necessitates a few constraints, the primary one being more
emphasis on "front-end" (requirements and design) of the project than
would normally be expected with a small project. In addition, the
process is emphasized as much or more than the product.

Although the course has both a lecture (one hour per week) and a
laboratory (three hours per week), it is primarily a laboratory course. The
lecture portion of the course provides instruction on what is to be done,
not how to do it. For many of the students this is their first "real" project.
The course takes them step by step through a typical software project
and allows them to try out many of the computer science and software
engineering principles and technology that they have learned. The fol
lowing skills are needed for the course:

• Preparing written technical documents

• Preparing and presenting short oral technical reports

• Planning and scheduling an activity

• Analyzing a system and specifying its requirements

• Designing a system from requirements

• Coding a system in an acceptable language from a design

• Designing test procedures and test data

• Testing a completed system

www.manaraa.com

Thayer and Endres 275

As in private industry, the students are treated like professionals. They
are allowed to establish their own schedule and set their own goals. As
in industrym, the students are expected to meet their goals and achieve
a standard of quality in their product.

Course and Project Requirements

Each student is required to participate on a software development team
of from two to four students and participate in all phases and activities of
a software development project. The student team will select their own
project from a set provided by the previous senior project classes or
seek their own from the local industry or government. Each project is
expected to require between 200 and 250 hours per student over the
two semester period. To gain credit for the first semester, the student
team must complete the project through requirements specification and
user's manual phases. Students with a grade of "D," "F" or "I" in the first
semester are not allowed to enroll in the second semester. By the end
of the second semester, the student team must have completed the
project in order to receive a passing grade. The following steps or
phases of a project are required:

First Semester

1. Identify sponsor/customer and product

2. Prepare project proposal

3. Plan project

4. Analyze requirements of product

5. Prepare user's manual

6. Prepare software requirements, review, and management
status (verbal)

Second Semester

1. Prepare test document

2. Design product software

3. Code software

4. Test software

5. Prepare maintenance manual

6. Prepare final report (verbal and written)

www.manaraa.com

276 SE Project Lab: Bridge Between University & Industry

Documentation

Each of the above phases and activities will terminate in an appropriate
document. Each document should be self-contained and written for
anyone with a general computer science background. It should not as
sume a detailed understanding of the specific project. The student is
encouraged to consult the IEEE Standards Style Manual as a guide to
good technical documentation. IEEE Software Engineering Standards

and Guides are used as documentation models and outlines whenever
possible.

Milestone Reviews

The students must prepare and present milestone reviews relative to
their projects. The students do two oral presentations during their
senior project. The first presentation (at the end of the first semester) is
called a software requirements review and contains information on the
current technical and managerial status of the project. The second
presentation is the final review and contains information on what was
accomplished and what lessons were learned. The oral presentation
provides:

• Experience in making a formal presentation on a technical
subject,

• Practice designing and fabricating visual aids,

• A chance to get feedback on style and communication
skills,

• A well thought out presentation to be given to the project
customer and the laboratory instructor on the present status
of the project.

The listeners are given a rating sheet to provide feedback to the
speaker as to style, presentation context, visual aids, manner of speak
ing, etc. This rating sheet is not used by the laboratory instructor in
grading the student.

Senior Project Folder

The final class deliverable for the senior project is a bound 9"x11-3/4"
folder containing all documentation and information about the project.
The purpose of this folder is to (1) represent the final product of the
course and (2) serve as an example for future classes.

www.manaraa.com

Thayer and Endres 277

Selecting a Project

The projects are selected by the students not the laboratory instructors.
The laboratory instructor can veto a project that seems inappropriate.
Since it is difficult to select a job that takes about 200 hours of work,
many senior projects overrun the students' initial time estimate.
Projects that do not live up to the original estimate are often adjusted in
scope as needed during the first semester. However, projects must be
on schedule to be reduced without penalty.

The students are expected to select a project in their application
specialty, e.g., data processing, graphics/CAD/CAM, numerical com
putation, scientific computing, or system software. Students with non
application specialties, such as software engineering and database, can
work on any application that uses their skills. Team diversification of
talents is often especially effective.

Identifying an Acceptable Project

The following are some rules of thumb gained through experience that
the laboratory instructor uses to identify an acceptable project:

• The product cannot be simply a game.

• "Home brew" projects are not allowed.

• The project must be big enough for 2-3 persons.

• The project must exhibit all phases of the lifecycle.

• The product must be coded in at most a third-level lan
guage (Le., no GPSS, no simple databases).

• The product must be complex. (It should have 3 to 4 major
dependent functions.)

• Each person should code at least 1 and, at most, 2 or 3
major modules.

• The product must contain 25-50% custom code (Le., the
project must not be all "packages").

• The product must be big enough that the project can fail.

Identifying an Acceptable Customer or Sponsor

The following are some rules of thumb gained through experience that
the laboratory instructor uses to identify an acceptable customer. Ex
perience has also shown that better results can be obtained by picking a
good customer than by picking a good project:

www.manaraa.com

278 SE Project Lab: Bridge Between University & Industry

• The customer must not be related to students.

• The students must not work for the customer.

• The customer must be legitimately in business.

• The customer should not be too "computer" naive.

Project Organization

Each project must have assigned a project manager, a project ad
ministrator, and as many programmers/analysts as necessary. The
laboratory instructor acts as the "division manager for software
projects." The project administrator (PA) is a student chosen by the
instructor. Normally, each PA is responsible for 2 to 4 project teams. In
general, the PA does man-hour accounting, task accounting, software
quality assurance, class administration, record keeping, etc. Students
filling this position are expected to have some previous non-classroom
experience with software projects.

Senior Management

The laboratory instructor wears two hats: instructor and division
manager. As instructor he is responsible for the student's education.
As division manager for software projects he is responsible for the suc
cessful delivery of the product. In his role as a manager, he insists that
the student comply with "company" procedures and policies. For ex
ample, all documents will be first turned in to the project administrator
for review and acceptance. The project administrator will in turn forward
the document to the division manager. The division manager does not
accept documents directly from a project. However, if students are
having trouble with the technical requirements of a document, the in
structor must not act like a division manager but as an instructor.

Project Manager

The project team is headed by one student identified as project
manager or project leader. The project manager is responsible for
providing technical and supervisory guidance to the team members and
for reporting personnel problems to the laboratory instructor or PA.

www.manaraa.com

Thayer and Endres 279

Project Administrators (PA)

The original purpose of the role of project administrator was to simplify
the laboratory instructor's job. The ideal PA is a student who has al
ready done a project and who has seen the lifecycle and its documen
tation from a practical point of view. Initially, the PA performed only the
clerical duties involved in managing 6 to 10 projects: keeping track of
time-sheets, scheduling meetings, collecting correspondence.

As the course evolved, the PA was also given the duty of performing the
first level of documentation quality control. Since the PA is also enrolled
in the course, often he can do no more than determine if the project
team is following the outline correctly and dOing some first level
proofreading and editing. However, by the second semester, the PA is
capable of a more thorough review of the documents.

Another important quality in a PA is that of subtle leadership. The PA is
in a staff role to the laboratory instructor and without careful attention,
the PA could become manager of the project team by default. It is an
important part of the learning experience that the project team struggle
with the problems of group management.

Management Analysts (MA)

One of the continuing problems in Senior Projects is that of obtaining
new projects for each class of seniors. Since the emphasis is on real
projects with real customers who change their minds and forget to men
tion essential requirements, the concept of using 'canned' projects was
rejected. At the same time, it seemed too much to expect all students to
find projects on their own; therefore, the solution was to have two or
more students called management analysts (MA) appointed to go out
into the community and recruit projects for the next class of seniors.
This involves advertising in the local paper and contacting various busi
ness throughout the Sacramento area. The MAs also do some screen
ing of the projects before the laboratory instructors review them.
Originally, these management analysts were selected from the class;
however, this was unsatisfactory - the students were not receiving suf
ficient education in developing large systems. The next attempt was to

recruit management analysts from outside the Senior Projects class; un-

www.manaraa.com

280 SE Project Lab: Bridge Between University & Industry

fortunately, these students did not know what kind of projects were ap
propriate. Our latest attempt is to have the PA to also perform the job of
MA. This involves obtaining new projects from previous good cus
tomers if they have additional projects. Using these techniques, a fairly
steady flow of 20-30 projects each semester is realized.

Team Members (Partners)

Selecting partners for a computer science project can be critical to the
success or failure of a project. Students are encouraged to pick their
partners with care. Consideration should be given to things like:

• Is there a balance of technical skills?
• Are the work habits of the team members compatible?

• Are the personalities compatible?
• Are the team members able to get together frequently?

Managing the Project

Each project automatically begins with the preliminary project plan from

Table 2.

Week
Due Activity

2 Identify Project
4 Prepare Proposal
8 Plan Project

12 Analyze Requirements
14 Prepare Manual
15 Software Requirements

Review
17 Prepare Test Plan &

Procedures
20 Design Software
24 Code
27 Test Software
28 Prepare Maintenance Manual
29 Final Review
30 Customer Acceptance

Deliverable

Project Proposal
Project Management Plan
Requirements Specification
Users' Manual
Review

Test Documentation

Design Specifications
Source Listing
Test Results and Evaluation
Maintenance Manual
Review
Final Report

Table 2: Preliminary Project and Cost

PctofTotal
Time Spent

5
7

11
16

9
2

6

15
15

8
2
2
2

Project Management Plan and Requirements Specifications

The project proposal, project management plan, and project require
ments specifications are the three major contracts signed by the stu-

www.manaraa.com

Thayer and Endres 281

dent, the customer, and the laboratory instructor. Since the project has
never been done before, it is highly likely that unforeseen problems will
arise. Therefore, the project team, customer and instructor all must un

derstand that the original contract is subject to renegotiation. If the
original work has been planned well and the status kept up-to-date, then

problems can be identified and the project can be easily replanned.

Project Schedule and Status

Each project team submits a schedule (in the proposal and again in the
project management plan) to the Project Administrator, outlining the en
tire year. Each project team is responsible for reporting total number of
hours worked at least once every two weeks during a laboratory period.
The PA reports significant changes in the project status to the laboratory

instructor and keeps a document/milestone log for the project.

Inch-Pebbles

Many laboratory instructors require intermediate "prototype" documents
prior to the final deliverable document. These intermediate milestones
are called "inch-pebbles." This approach allows both the students and

instructors to get a first-cut look at the progress a team is making. Oc
casionally, a team's viewpoint is wrong and this can be seen and cor

rected from the inch-pebble. The danger with this approach has been
the team assumption that if the inch-pebble is right, then the delivered
document will be right, which is not always the case. Examples of inch
pebbles are: work breakdown charts prior to the project management
plan, data flow diagrams prior to the software requirements specifica

tions, and a preliminary architectural design prior to detail design.

Unit Development Folder

There has been some success with the Unit Development Folder (UDF)
concept. The laboratory instructors have found it very helpful to have

each project team maintain a three-ring, loose-leaf notebook containing
a signed copy of all project documents. Every time a new document is
submitted, the complete folder is turned in to the laboratory instructor for
review and approval.

www.manaraa.com

282 SE Project Lab: Bridge Between University & Industry

The Class

The course consists of one lecture and one laboratory period each
week.

The Lecture

The lecture is one hour (50 minutes) long and covers topics pertinent to
the completion of the project. In general, the lifecycle is reviewed and
the activities of each phase are reviewed as the project advances into
each phase during its development. Specifically, the lecture con
centrates on the documentation required during the phases. Standard

format, outline, and document content are presented and discussed.

The Laboratory

The laboratory is three hours (150 minutes) long and consists of status
reports and dialogue among the students, instructor and project ad
ministrators. Often laboratory instructors set aside time for more private
meetings with individual project teams. It is also expected that the
project teams hold group meetings during this time. Typically, the
teams meet with their project manager to:

• Discuss work accomplished the previous period

• Discuss and document problems
• Turn in the man-hour accounting sheet

• Estimate what will be accomplished during the next period

• Negotiate changes in project scope or schedule.

Document Review

Project administrators and instructors must make a concerted effort to
have a quick turnaround on all completed documents. In order for the
course to work, the documents must be reviewed and returned in less
than one week. Toward the end of the semester, as the project ad
ministrators and laboratory instructors become more busy, the tur
naround time may exceed one week.

Grade

In the "real world" the project (both process and product) is subject to
review by management, which can affect one's salary or continued

www.manaraa.com

Thayer and Endres 283

employment. Since the students are not paid for senior project work,
their "salary" will be in the form of a grade. The grades are based on
the quality and timeliness of each phase of the development life cycle ,
plus credit for man-hour reporting and oral reviews. The quality of the
work done is judged by the document delivered at the end of the phase,
e.g., requirement specification, design document, etc.. Each semester
is graded separately. All requests for due date extensions must be
received in writing and at a suitable time prior to the scheduled date.
Repeated slippages caused by procrastination are not permitted. Stu
dents who persistently fall further and further behind, until there appears
to be doubt that they will receive a passing grade, are dropped from the
course after a suitable warning. The laboratory instructor is solely
responsible for grading the student. Project Administrators are primarily
graded on their managerial ability.

Cheating

Cheating in this course is defined as (1) submitting somebody else's
specific work as one's own and (2) forging somebody's signature.
Copying documents from other sources that support a project is permis
sible and encouraged, provided the source document is properly
referenced and/or credited.

Disclaimer

It was considered prudent to add a clause to the project proposal and to
the project management plan that disclaims responsibility for the
product.

Ownership

Since the students neither work for the school nor for the project
sponsor/user, it is the students who are assumed to have nominal
"ownership" of the final product and documentation. Students, instruc
tors, users, sponsors or other interested parties who wish to have a
clear legal title to the senior project product are told to get a separate
agreement with all parties concerned signing the agreement.

www.manaraa.com

284 SE Project Lab: Bridge Between University & Industry

Problems Encountered and Solved

The following section presents and discusses several problems that
were encountered and solved in the last two years of teaching senior

projects.

Completion of the Course

Several years ago it was customary for the senior project student to
apply for and receive an incomplete grade (I) in the course. This al
lowed the student one extra year to finish the course. This resulted in
numerous students never graduating. Today an incomplete grade (I)
grade is rarely given or limited to an additional 2-4 weeks.

Completion of the First Semester

Before the application of milestone management and the insistence on
project completion through requirement specifications and test docu
ments in the first semester, it was not unusual for students to wait until
the last 2-4 weeks of the year before beginning the project. This
resulted in unreasonable pressure on both the student and laboratory
instructor.

Grading

Once it was decided to treat grades like salaries, grading became some
what easier. Typically, documents are rejected by the laboratory in
structor and must be revised one or more times before they are satis
factory or acceptable. Since the project is graded on timeliness as well
as quality, lower grades usually reflect that a document was accepted
late, not that it was of poor quality.

Documentation

What has been found to be most beneficial (and what the students do
not seem to be able to get enough of) are examples of good and bad
documents. We have several years' worth of examples of previous
projects in the library's reserve book room. Keeping them current and
well-annotated is a major undertaking.

www.manaraa.com

Thayer and Endres 285

Data from Senior Projects

The Projects

The data for Figure 2.1 through 2.4 was obtained from one laboratory of

the most recent senior project course (Sep-Dec 1985). Six projects
were chosen, each with three students. All but one of these projects
was implemented on a personal computer. All projects meet Boehm's
[12] criterio for a "small" organic project.

The Deliverabfes

Figure 2.1 shows the project name, the language used and a brief

description. It also shows the total pages of documentation and the
number of lines of code delivered by the project. No attempt was made
to define a "page" of documentation. Thus the table of contents and

partial or blank pages may be included in the total depending on the
project. Similarly, there were no standard margins, page sizes, etc.

These numbers are provided to allow an idea of the "size" of the effort.
The number of lines of code include comments.

Project Language Project Description Pages of Lines of
Document Code

sms basic school records database 289 1800
pms pascal+base phone operator schedule 368 2750
raids fortran ram jet engines minulation 185 510
docpro pascal legal document processor 170 1563
Irs basic library reference system 381 1200
pms-mafb dbase II proj. scheduler-Mather AFB ~ 3300

297 *1854

90 932

Figure 2.1. Hours Spent on Seven Phases of Projects

Time Spent per Phase

Figure 2.2 shows the hours spent for seven phases of these projects.
Each of these phases resulted in a deliverable document (Proposal,
PMP, SRS, UM, Design Spec., Test Spec/Report, and source code).

www.manaraa.com

286 SE Project Lab: Bridge Between University & Industry

Project Proposal Planning Analysis User Design Test Spec Coding
Manual & Testing

sms 114 75 221 169 86 96 128

pms 119 70 69 76 269 78 185

raids 56 59 120 38 100 172 87

docpro 109 87 99 54 60 110 90

Irs 89 106 68 49 77 142 87

pms-mafb 126 82 124 34 150 65 120

Average 102.2 79.8 116.8 70.0 123.7 110.5 116.2

Std. Dev 23.6 14.7 51.5 46.3 70.7 36.8 34.8

Figure 2.2. Percentage Effort Spent per Phase

Figure 2.3 shows the same data as percentages of the total time spent
on the project. The data was collected every two weeks and probably
has as much error in it as data collected from industry.

Project Proposal Planning Analysis User Design Test Spec Coding

Manual & Testing

13% 8% 25% 19% 10% 11% 14%
sms 9% 21%

14% 8% 8% 9% 31% pms
6% 16% 27% 14%

raids 9% 9% 19%

docpro 18% 14% 16% 9"/0 10% 18% 15%

Irs 14% 17% 11% 8% 12% 23% 14%

pms-mafb 18% 12% 18% 5% 21% 9"10 17%

Average 140/0 11% 16% 9% 170/0 16% 16%

Std. Dev. 3% 3% 5% 5% 8% 70/0 30/0

Figure 2.3. Percentages of Total Time Spent on Project

Summary of Results

Figure 2.4 shows a summary of the effort (in terms of total hours
expended) and then presents the results of that effort in terms of
"deliverables": documentation and source code.

www.manaraa.com

Thayer and Endres 287

Pages of ~
Document Qf Code

Project Total Hours per Hour per Hour

sms 889 0.325 2.0
pms 866 0.425 3.2
raids 632 0.293 0.8
docpro 609 0.279 2.6
Irs 618 0.617 1.9
pms-mafb ZQ1 QM1 4.7

AVEPAGE 719.2 0.415 2.5
STD. DEY 116.0 0.129 1.2

Figure 2.4. Summary of the Effort

Conclusions

Minor Problems Yet to be Solved at CSUS

Design Reviews

It is apparent that this course suffers from the same malady that industry

has "we can't seem to find the time and the people to do a 'good' design
review." Although this is an essential part of the lifecycle, the students

are already burdened by the amount of work that the course entails.

Code Walk-throughs

The same problem applies to code or design walk-throughs. Oc
casionally, code walk-throughs have been scheduled for extra credit.

Unfortunately, most often the team that needs extra credit is the furthest

behind.

Grading

One unsolved problem (which also appears in industry) is: How does

the manager detect and grade a student who is not pulling his fair share

of the load? Often the team is willing to cover up for a "slacker." In
several instances it has been necessary to ''fire'' a student when this

situation has gotten out of hand.(Le., flunk or remove them from a

project and assign them to another project to do by themselves).

www.manaraa.com

288 SE Project Lab: Bridge Between University & Industry

Major Problems Yet to be Solved

Size

The major unsolved problem is that of really "simulating" a large project
atmosphere. In general, most of the projects done by the teams are
rather small and best done by one or two people. There should be a
way to allow students to work on a project which needs a-team of 10 to
50 people for completion. Unfortunately, there are many obstacles to
overcome:

• Getting enough students with similar backgrounds

• Finding (or building) a large enough project

• Doing the project in a one year time frame

• Finding the management for such a group of students

• Getting all students to participate in all project phases

The closest approach to such a project was one large, system-type
project which lasted two years and was worked on by two three-man
teams.

Maintenance Phase

The course does not allow students to experience any aspects of the
maintenance phase. There do not appear to be courses in this field
anywhere. Yet we realize that a majority of students will be hired in that
capacity in their first job. An approach might be to have a separate
course in which a student will have to maintain a previously delivered
senior project. This would be an excellent experience in observing first
hand the problems of delivering a correct software system.

The Major Successes of
Our Software Engineering Laboratory

This course has five major benefits for the student. It provides:

• A capstone course that provides an opportunity for the stu
dent to gather together all the information he has learned in
three years of computer science education and practice
how this information interacts to solve a non-academic
problem.

www.manaraa.com

Thayer and Endres

• An opportunity for the student to experience all phases of a
lifecycle and to participate in task and jobs (such as project
management) that might not otherwise be available for
several years.

• A chance for the student to demonstrate his capabilities in
the "real world," thereby instilling pride and a sense of ac
complishment.

• An opportunity to get "work experience" for the student's
resume. Senior projects appear as work experience rather
than as a classroom course on a resume.

• An exhibit that the student can be proud of, which provides
physical evidence to a prospective employer or interviewer
that the graduate is a software engineer or computer scien
tist.

289

www.manaraa.com

290 SE Project Lab: Bridge Between University & Industry

Appendix

Course Objectives

Upon completion of this course, the student will have:

• Worked semi-independently from the academic environ
ment while developing and implementing a software sys
tem.

• Taken responsibility for initiating, managing and delivering
a software system from initiation to final delivery of the
product.

• Demonstrated an understanding of lifecycle development
phases.

• Worked in multi-person software development teams.

• Demonstrated the ability to accomplish all aspects of a
software engineering project.

• Demonstrated an understanding of one software engineer
ing development technique and methodology.

• Given a verbal technical report.
• Produced a software system through working with a poten

tial software user and determining the software needs of
that user.

• Written office memos or proposals to obtain resources
necessary to initiate a project.

• Done a feasibility study, economical analysis, and top-level
requirement analysis.

• Written a software engineering project proposal.

• Obtained user's concurrence with the proposal.

• Planned a software engineering project.

• Determined the cost and schedule for a software engineer
ing project.

• Written a software engineering project management plan.

• Analyzed a software engineering requirement, i.e., con
verted users needs to testable requirements.

• Applied state-of-the-art software requirements represen
tation techniques to a software requirement.

• Written a software engineering requirement specification
(SRS): complete, consistent, correct, modifiable, un
ambiguous, testable, traceable, and process-free.

www.manaraa.com

Thayer and Endres

• Written a user's manual.

• Analyzed testing needs to assure that a delivered software
system will satisfy the software requirement specifications.

• Written test plan, specifications, procedures, test cases,
and test reports.

• Prepared and presented a software requirement
review.(SRR)

• Designed a software system from a requirement specifica
tion; represented the software system with a state-of-the-art
design and documentation system.

• Written a software design specification(SDS).

• Programmed a system from a software design specifica
tion.

• Tested the completed system in accordance with the
developed test plan, test specification, test procedures and
test cases.

• Written a test report.

• Written a maintenance manual.

• Obtained user's acceptance of the software system.

• Prepared and presented a final report.

291

www.manaraa.com

Software Projects in an Academic Environment

David B. Wortman
University of Toronto

Abstract. This paper describes our experience in using a program
ming project as an adjunct to a graduate-level course in software
engineering. It discusses the strengths and weaknesses of the project
as a teaching tool.

Introduction and Background

For many years we have taught a graduate-level survey course called
"Computer Program Engineering." The course is designed to familiarize
graduate students with the a variety of topics in software engineering. It
is similar to the course described in [58].

The Software Hut Project

In the course we use a software project called "Software Hut" [53]. The
project was originally devised by J.J. Horning to introduce "real world"
experience into a graduate software engineering course. The project
involves a three-phase development of a software system by competing
teams of students. In its usual form, the software is composed of an
information producer (module A) and an information consumer (module

B). In the first phase of the project, each team designs and constructs
either module A or module B. In the second phase, each team obtains
modules A and B that they have not written and integrates them into a
complete working system. In the third phase, each team takes a com
plete system composed of modules A and B that they have not
produced and makes some modification to the system. This modifica
tion is not revealed to the students until after they have selected a sys
tem for phase three so that their choice must be made in the presence
of some uncertainty.

In the original software hut project, software modules were exchanged
in a free market. Each team of students set a "selling price" for their
software. They also made a decision to "purchase" software from some
other team for use in phases two and three of the project. At least part

www.manaraa.com

Wortman 293

of the student's grade for the project was determined by their net profit
(proceeds from sales less cost of purchases).

The project was designed to simulate "real world" software development
problems. It forced the students to think about issues like software
structure, readability, maintainability, modifiability and software quality in
ways that they had not considered before.

Course Project Goals

Before discussing the project, we examine its role in a software en
gineering course. We assume that the purpose of a graduate-level
course in software engineering is to make the students aware of the
problems and issues involved in the design, implementation, and main
tenance of large software systems. This assumption biases our view of
the purpose of the software project. If we were teaching a course that
was more management oriented, e.g., a course for software managers
or software entrepreneurs then the relative importance of the software
marketing aspects of the project would be much higher. We believe that
the software project makes several contributions to the education of the
students.

1. Experience with different program development styles. Our course
is taught to first-year graduate students who come into the course from
a variety of backgrounds. We feel that the students benefit from ex
posure to the variety of program development styles that they encounter
during the project.

2. Designing and coding to a strict specification. Although most of the
students will have participated in programming projects as a part of their
undergraduate education, we believe that they have usually never had
to develop software that strictly followed a formal specification. The
project format and the need to exchange software with other teams
forces close adherence to the project specification.

www.manaraa.com

294 Software Projects In an Academic Environment

3. Interfacing with foreign code. The students have to write programs
that conform to an interface that they did not design. This teaches them
the value of well specified, precise interfaces.

4. Designing and coding for unspecified future change. The need to
make an as-yet-unknown modification to the software system in the third
phase of the project introduces a concern for designing the software so
that such modification is easy. This has an influence on the design of
the software and is often a major criteria that the students use to select
the software they will use in phases two and three.

5. Use of version control and configuration management tools. We en
courage students to use available software development tools in their
work on the project. This gives them a chance to learn about program
ming environments and about the issues of version control and con
figuration management. Most of the projects have used the sccs [84] or
the rcs [97] version control system, and the make [31] configuration

management tool.

6. Working to a strict schedule. The due dates for the phases of the
project are set at the start of the project and are rigidly followed. The

students realize that failure to complete their software by the end of a
project phase will have a disastrous effect on their evaluation.

7. Assessing software quality. I n making decisions on what software to
acquire for the second and third phases of the project, the students
have to examine various alternatives and make their own evaluation of
the quality of each. Usually the programs and their accompanying
documentation were placed on file in some place where they could be
inspected by all teams.

It is important that the project should be more than just another pro
gramming project. The design of the project should focus the student's
attention on software engineering issues that are typically ignored in
other projects. This focus can be achieved through careful project
design and through specification of an appropriate set of project goals.

www.manaraa.com

Wortman 295

Pedagogical Issues

There are a number of pedagogical issues that arise when a project is
used as a part of an software engineering course.

Student Time and Effort Implications

The typical full-time student taking the software engineering course is
typically taking 2 to 4 other courses simultaneously. It is unfair to the
students to mount a course that requires an unreasonable amount of
their time. Students can (and do) complain loudly if they think their

workload is excessive.

The software project has to be planned with this constraint in mind. The
instructor should monitor the student's workload throughout the project
by watching his/her computer resource consumption and by talking with
the student. The project description should allow the instructor some
latitude for changing the project dynamically if he/she feels that the
workload is becoming excessive.

Instructor Time and Effort

Consideration also has to be given to the amount of instructor and tutor
time required to mount and administer the project. The project should
be designed so that the amount of effort that they have to expend on the
project is reasonable under the circumstances. The major pitfall for the
instructor is to design a project that requires too much effort to evaluate
and test between the project phases.

Suitable Test Bed - New vs. Used

In designing the project, a choice can be made between developing new
software and working with an existing software system. There are ad
vantages to both choices. Working with existing software reduces the
project start up overhead and allows a much larger software project to
be undertaken. A project starting with existing software might involve
the analysis, design and implementation of some modification or en
hancement to the software. The project can be self perpetuating be
cause the result of one year's project can be the starting point for the
following year. There are also drawbacks to this alternative. It requires

www.manaraa.com

296 Software Projects In an Academic Environment

the students to become expert in the working of some particular
software. This may be a time consuming activity (e.g., the existing sys
tem might be a compiler or a database system). Students who had prior
knowledge in the area of the selected system would have an advantage
over those who do not. It is difficult to find a large, interesting system
that avoids this bias. There is also a question of whether the students
should be exposed to a system that is typical or exemplary. A typical
system will teach them a lot about real software, but it will also mire

them in the mistakes of others. We have observed a distinct shortage of
large software systems of exemplary quality.

In many ways it would be desirable to turn the students loose on a really
large (Le., more than 1 M source lines) software system and let them
learn first hand the difficulties in working with software on this scale. We
have never done so, because we felt that too much of the students time
would be consumed in simply getting up to speed on that much
software.

The other alternative is to have the project develop new software. This
choice orients the course more toward the design and development
aspects of software engineering. It has a high start-up overhead due to
the need to design and implement a lot of code. It also limits the
amount of software that can be developed in a one semester course.
The student programming effort can easily become excessive unless
the instructor monitors the situation carefully.

Timing of Project Relative to Lectures

There is a fundamental timing problem with the software project. To do
well in the project, the students need to know the material presented in
the accompanying course. This raises a conflict between the pedagogi
cally desirable order of exposition and the order which best serves the
needs of the project. It is simply impossible to present enough of the
material before the start of the project or even to present enough of it
early in the course so as to keep ahead of the students. The students
should learn about specification techniques and methods of software
design before they start the project. They should also be aware of
various alternatives for organizing software development teams. Before

www.manaraa.com

Wortman 297

software development begins, the students should learn about version
control, configuration management, and programming environments.

We once tried doing the project as a separate (summer) project course
in the semester following the lecture course. This experiment was un
successful and was not repeated. The failure may have been due to the
way project courses are organized at our institution because one major
failing was inadequate communication between the students and be
tween the students and the instructor.

Choice of an Implementation Language

The choice of a programming language in which to write the software
can be a critical factor in the project's success. Our students do not
usually share a common programming language, so a compromise
selection must be made and some of the students have the extra bur
den of learning a new language. This situation has become better in
recent years since the students are now more likely to know Pascal or
c.

In the early years of the software hut project, the students selected the
programming language by majority vote. This sometimes led to dis
asters when the programming language turned out to be unsuitable for
the project at hand. More recently the instructor has imposed a lan
guage on the students based on her/his foreknowledge of what the
project will entail.

The instructor must also choose between a fairly unstructured language
such as Fortran or C and a language that encourages structured pro
gramming such as Pascal, Modula-2 or Ada. An unstructured language
probably gives the students a more realistic introduction to "real world"
programming but it also burdens them with the overhead of fighting the
programming language. The other choice makes it easier for them to
develop modular, well-structured software. We believe that most of our
students would opt for the second choice if the decision were theirs.

It is also important that there be a stable and reasonably efficient com
piler for whatever language is chosen. Fighting compiler problems is

www.manaraa.com

298 Software Projects In an Academic Environment

not a productive or educational task for the students however realistic it

might be.

Evaluation Algorithms and Creditability

The algorithm used to evaluate the quality of the software should en
courage the students to learn "good" techniques. It should be repeat
able and should be viewed by the students as being fair and rewarding
excellence. We have tried different algorithms over the years, usually
basing them on such factors as readability, efficiency, documentation,
and programming style. We have found it difficult to devise an algorithm
that does not ultimately involve the instructor's subjective judgements.
Any evaluation algorithm with a subjective component is open to ques
tions about its creditability. We do not believe that any of the presently
available software metrics are suitable for evaluation of course projects.

Problems

In this section we discuss a variety of problems that have arisen in our
use of a software project.

Small Scale Effects

The software project as described in Section 1 simply does not work if
there are not enough students to form at least 5 or 6 teams. A similar
result was observed by Woodward and Mander [106]. When faced with
a small enrollment, we switch to an alternative project design in which
the students work cooperatively to design and implement modifications
to an existing piece of software. This gives them some of the same
learning experiences as the larger project but avoids its complexities.

Presentation of Project Goals

It is important that at the beginning of the project, the goals for the
software system be clearly explained. The students need to know what
factors will be important in the evaluation of the software. If difficult to
quantify criteria like "well-structured", "good style", "well documented"
are used as goals for the project then it may be hard to describe these
goals to the students in any simple way. One source of student com
plaints has been the lack of well defined goals for the project.

www.manaraa.com

Wortman 299

Evaluation of Software Quality

The greatest difficulty that we have had in administering the project has
been the evaluation of software quality. The project format forces this

evaluation to be done in a short time period, typically one week or less.
During this time, the instructor or a tutor has to read the programs and
make an assessment of the quality of each. The size of the software
makes this a task of considerable magnitude. The assessment is sub
ject to the problems of subjectivity discussed above.

Costing for Resource Consumption

A realistic evaluation of each team's performance would include assign
ing to each team a cost for the human and computer resources that it
used in completing the project. Asking the students to accurately ac
count for their own time is not feasible. In most universities, the stu
dents have access to a variety of computer systems using different ac
counts. In such an environment it is usually not possible to require the
students to use a specific computer and account for the course project
and thus it is not possible to determine computer resource usage for
each team.

With the present project the best strategy for the students may be to use
computer resources lavishly, especially in place of the scarcer human
resource. The project is not intended to encourage this style of project
development.

A Fair Evaluation Algorithm

Some algorithm will be used to evaluate the student's performance in
the project and to calculate the project-related component of the their
course mark. It is important that this algorithm be fair to all students.
The evaluation of a student should be based on the merit of the
student's work (or on the work of a team) and not on random events
beyond the student's control. The algorithm should be fully disclosed at
the start of the project and should not be altered without the consent of
the students involved.

www.manaraa.com

300 Software Projects In an Academic Environment

Over the years we have used algorithms that included factors for:

• the instructor's evaluation of the quality of the software.
This evaluation was usually based on reading of the
program and its documentation.

• results of program testing. The instructor or a tutor would
devise a set of test cases and apply them to each program.
A penalty would then be assessed for each error that was
found in the program.

• the student's profit from buying and selling software.
Software would be bought and sold between phases of the
project. The student would be credited with the value of
software that was sold and debited with the cost of software
that their team purchased.

Student complaints about the fairness of the evaluation algorithm have

been a continuing (and well justified) problem. Each of the evaluation
components described above has its problems.

Evaluating the quality of a large piece of software by an (often hurried)
reading is difficult. It is difficult to communicate the evaluation standards
to the students in a way that allows them to try to achieve quality

In the early years of the project, the error penalty was exponential, a raw
evaluation of the software was multiplied by a factor of O.suN where N

was the number of errors detected. This had the undesirable effect of
creating a wide gap between programs that had no errors and programs
that had even a small number of errors. More than 3 or 4 errors in a

program could destroy a team's chance of obtaining a good mark.

Because we felt that the exponential penalty was too severe, in more
recent versions of the project, the penalty multiplier has been of the form
X**N with X in the range 0.8 to 0.95.

Our discouraging (but not unexpected) observation is that if we looked
for errors in the student programs it was easy to find them. In general,
the programs submitted for evaluation had not been adequately tested,

even though the students knew about the high penalty for program er
rors.

www.manaraa.com

Wortman 301

Student Gaming and Collusion

Graduate students are usually good optimizers. Given an evaluation
algorithm, they are quite clever about finding ways to maximize their
marks relative to that algorithm. We have observed several student
efforts to "game plan" the project in an attempt to obtain a good mark.
Some examples:

• collusion in trading software. Different teams of students
would agree to exchange their software at prices that either
maximized their respective profits or guaranteed that all
teams would have approximately the same profit.

• freezing out a successful team. If one team did exception
ally well in the first phase of the project, no other team
would deal with them regardless of price/quality considera
tions in the second and third phases of the project.

• buying cheap software. Some teams would buy the
cheapest software available regardless of perceived quality
on the assumption that this would maximize their net profit.
They assumed that they could overcome any problems that
might arise with the software.

This game playing was not intended to be the major emphasis of the
course. The original purpose of the free market exchange of software
(Le. to make the students think about price/quality) was being perverted.
Many students objected to a course project in which they could only
obtain a good mark at the expense of their peers.

Sufficient Penalty for Poor Software

In the ideal project, there should be a strong bias toward correct, ef
fiCient, well designed and well constructed software. We would like the
students to develop a feeling for these characteristics and to favor such
software. Unfortunately, in the scale of projects that we have been able
to run, the penalty for acquiring poor quality software could not be made
high enough to serve as a real deterrent. Some students choose to
acquire the worst software available because it was also the cheapest
and thus maximized their "profit." This is not what we had intended.

With the relatively small scale of our projects the students were usually
able to overcome any software difficulties without undue hardship.

www.manaraa.com

302 Software Projects In an Academic Environment

Buying and Seiling of Software

The original software hut project assumed a completely free market ex
change of software among the teams. Each team set the selling price of
its software and the terms under which it was sold. Some of the more
imaginative teams made "sales presentations" and offered inducements
such as a free software warranty. This approach was not entirely suc
cessful. If a team with good software priced it too high it would not be
purchased in spite of its superiority. There was usually a very large
difference between the "profit" of the best team and the worst team.
This difference made it very difficult for a team that did poorly between
phases 1 and 2 to ever recover. Although it might be argued that this
approach is closest to the "real world", it also introduced an unneces
sarily divisive factor, pitting student against student.

Several attempts were made to make the buying and selling of software
more equitable and fairer to all students involved. First, teams we re
quired to set their prices without knowledge of the other team's prices.
This prevented the last team from setting its price to undercut all the
others. The mechanism used was to have all teams communicate their
price to the instructor who would then announce all prices simul
taneously. The principle was established that the price of a piece of
software was the same for all buyers. Buying software was done semi
secretly to discourage collusion. Each team would communicate its pur
chase decision to the instructor who would announce all purchase deci
sions simultaneously. The intent of these changes was to focus more
attention on evaluation of the cost/quality of a piece of software and to
discourage economic warfare between the teams.

More recently the price of the software was based on the instructor's
evaluation of its quality and on the number of bugs it contained. This
meant that the teams could concentrate more on the choice of which
software to buy.

www.manaraa.com

Wortman 303

Lack of Testing

The present project organization does not encourage extensive testing
and quality assurance of the software that is produced. Testing com~
plex software can be very time consuming. Although we have been
tempted several times to do so, adding a testing phase to the project
would almost certainly increase the student's workload unacceptably.

Conclusions

The discussion in the previous section makes it clear that there are
many pitfalls in the design of a software project. We now feel that the
emphasis on buying and selling software in the original software hut
project gave the whole project the wrong orientation. The course we
teach is about the design and implementation of software, not about
software marketing. The buying and selling aspects of the project con
sumed too much student time and energy and were divisive and disrup
tive. We now advocate a project in which the students are evaluated on
the merit of the work that they do in each phase of the project, not on a
haphazard software market. Two methods of distributing software can
be used between project phases. Either the students can choose
among the available modules or the instructor can randomly assign
modules to each team.

A considerable amount of care and firm control is required to prevent
the project from consuming inordinate amounts of student and/or in
structor time. An effort should be made to organize the project so that
the student's attention is focused on software engineering issues. The
instructor should direct the project to prevent it from becoming just a
large coding project.

We believe that a properly controlled and oriented project can serve as
a useful adjunct to a software engineering course. It is desirable that
the students gain experience with problems that only occur with large
software systems. The interactions that occur in this project simulate
(albeit on a small scale) many of these problems.

www.manaraa.com

304 Software Projects In an Academic Environment

Appendix

Example Projects

This appendix describes several course projects that have been used at

the University of Toronto. After each description, we comment on the

relative success of the project

1. Assembler and Interpreter

This project involved the design and implementation of a primitive as
sembler and interpreter for a hypothetical mini-computer (similar to a

PDP-a).

For several reasons, this was not a very successful project. The stu
dents chose to program in PUI which turned out to be an inappropriate

language for expressing the bit manipulation required for assembly and

interpretation. They ended up spending far too much time fighting PUI.

2. Distributed Calendar Tool

This project involved the design of a set of tools for scheduling in

dividuals in an organizat.ion. An appointment secretary module would

maintain a database of appointments for an individual. The individual

could add and delete appointments as well as displaying a calendar of

appointments for a specified interval. The students had to design the

human interface to the program. A group scheduler module would inter

sect the calendars of a list of individuals and attempt to find an accept
able time for a meeting. Various constraints about acceptable meeting

times could also be given.

This was a reasonably successful project. It contained the right amount
of complexity and posed several interesting design challenges. The

human interfaces designed by the students were fairly poor. Interface

design is not a topic covered in any great detail in the software en

gineering course (it is covered elsewhere) so the students were un

prepared for the task. This project had to be prematurely terminated at

the end of the second phase due to excessive student workload.

www.manaraa.com

Wortman 305

3. Communications Package

This project involved writing two modules that communicated over a
simulated channel using a standard communications protocol (DDCMP).
In the first phase, each team wrote either a reader or a writer module
and tested them using a perfect channel provided by the instructor. In
the second phase, the teams integrated reader and writer modules to
provide a complete communication system. In this phase the instructor
provided a "dirty" channel that would randomly destroy information it
was carrying. The dirty channel required the students to think carefully
about error handling and recovery. In the third phase changes were
made in the communication protocol and in the interface to the system.

This was one of the most successful projects. It had the right charac
teristics: relatively small code size, intricate algorithms, and a require
ment to handle errors that made it interesting. The students came up
with several novel algorithms for computing the checksum that was a
part of the protocol.

4. Software Tool Design

The first phase involves the developing a complete specification for a
software tool (module interconnectivity mapping tool) from a prose list of
requirements. In the second phase, the students develop a detailed
design based on a specification produced by some other team. There
could be a third phase involving the implementation of a detailed design
produced by some other team but this is typically omitted.

This project was developed as a response to student complaints about
the excessive programming workload in previous projects.

www.manaraa.com

Exercises in Software Engineering

Jon Louis Bentley1

AT& T Bell Laboratories

John A. Dallen
United States Military Academy

Abstract. Typical software engineering courses teach principles in
lectures and readings, then apply them in the development of a single
program (requiring several months). We recently taught a software
engineering class that incorporated many smaller exercises (requiring
several hours). The class was successful. Students were able to
experiment with a broad set of ideas, and make interesting mistakes
without jeopardizing the grades of their development team. This
paper describes some tools and techniques we taught, and suggests
how they might be incorporated into typical software engineering
classes.

Introduction

In Fall 1985, we co-taught a senior-level software engineering course to
fifteen computer science majors at the United States Military Academy.
This paper describes a novel aspect of our course that might be
profitably incorporated into many software engineering courses - small
exercises in software engineering.

Section 2 describes one exercise in detail, and Section 3 surveys
several other exercises. Criteria we used in deSigning and evaluating
the course are sketched in Section 4, and our conclusions are offered in
Section 5.

A Detailed Example

In this section we will give the flavor of the exercises by describing a
two-class-hour exercise in some detail. The exercise was built around
Parnas's [75) classic paper on modular decomposition of systems,
which uses the example of a "key word in context" ("KWIC") program.

1 During the Fall Semester 1985, this author was Visiting Professor of Computer Science
at the United States Military Academy, supported by AT&T Bell Laboratories.

www.manaraa.com

Bentley and Dallen 307

KWIC programs are often used in documentation systems. The input to
such a program, for instance, might be a text file in which each line
describes a program. A sort program could be described by the input

line

sort order input files

The output of the KWIC program is the ordered sequence of all key
words in the file, each shown in the context of its line. Because the
above input line has four words, it will appear in these four output lines:

sort -- order input
sort -- order

sort --

files
input files

order input files
sort -- order input files

Parnas's paper sketches two modularizations for this problem. The first
was the style popular in the early 1970's; the five modules corresponded
to phases of the program that might be overlayed in core memory (input,
processing 1, processing 2, output, and control). The second
modularization is driven by the principle of "information hiding". Parnas
sketches the two solutions and then compares them; the second is su
perior in dimensions such as modifiability, independent development of
modules, and comprehensibility.

In the final few minutes of a Monday class hour we described the KWIC
problem and assigned the students the task of implementing a KWIC
program by Wednesday; we also passed out copies of Parnas's paper
to be read by Friday. Wednesday's class was a discussion of the KWIC
programs, and Friday's was a more general discussion of information
hiding, based on Parnas's paper and the programming experience.

Parnas's paper acknowledges that a KWIC program "is a small system";
it could be "produced by a good programmer in a week or two" and was
"used successfully in a class project" in a software engineering course.
The students in our course found it even simpler: a four-hour program
ming task using a UNIX™2 pipeline:

rotate infile I sort I print >outfile

2UNIX is a trademark of AT&T Bell Laboratories.

www.manaraa.com

308 Exercises In Software Engineering

(This pipeline is presented on pages 134-139 of Kernighan and Plauger
[59] and corresponds roughly to the modularization Parnas found in

ferior; the students had no difficulty deriving it independently.) The

rotate program processes the lines of its input file in order; if a given line
contains M words, it produces M output lines. Each output line is of the
form

second part of line<tab>first part

where the second part of the line begins at each of the M words. For
instance, the input line

sort -- order input files

generates these four output lines:

sort -- order input files<tab>
order input files<tab> sort -
input files<tab> sort -- order
files<tab> sort -- order input

(Note that the sequence "--" is handled as a special case; more on that
shortly.) The standard UNIX sort program then sorts the lines in order
of their second parts (because it appears first in each line), and print

writes the lines in the desired format.

A major theme of our course was using software tools in the style
described by Kernighan and Plauger [59]. We emphasized the use of
existing programs; when the students had to write programs from
scratch, they used the AWK language described by Aho, Kernighan and
Weinberger [1]. (The appendix explains this decision.) The rotate

program can be written in AWK as

{x = " " $0
for (i = 1; i <= length(x); i++)

if (substr(x,i,l) == " "
&& substr (x, i+l, 2) != " -- ")

print substr(x,i+l) "\t" substr(x,l,i-l)}

The code within braces is implicitly repeated for each input line. The
string x is the input line preceded by an initial space (so each word on
the input line is preceded by a space character). The for loop checks

each character in the string x , and if it defines a new word (Le., a space
not followed by "--"), it is printed in the desired format (second part, tab
character, first part).

www.manaraa.com

Bentley and Dallen

The print program is written in AWK as

BEGIN { FS = "\t" }
{ printf "%25s %s\n", substr($2,1,25),

substr ($1,1,25) }

309

The BEGIN line is executed at the start of the program's execution; it
sets AWK's field separator to the tab character. The substring operator
substr is then used to print each input line in the desired format.

The first part of Wednesday's class surveyed the students' programs.
The KWIC program described above is built from a 5-line AWK program,
a 2-line AWK program, and a command line. The students turned in
somewhat longer programs, but still fewer than 20 lines. The program
we have described in this section incorporates several clever ideas con
tributed by the cadets.

Our students were familiar with the classic "waterfall" model of system
development (the sequence of requirements analysis, specification,
design, implementation, testing, maintenance) from classes on project
management; we emphasized the importance of prototyping and itera
tive designs. The class discussion therefore turned to the next version
of a KWIC program, dictated by the students' experience in applying
their programs to an input file describing 28 UNIX programs with which
they were familiar. The following issues are typical:

Function

Key words like "a", "and", "of" and "the" give no information; those lines
should be deleted. The KWIC specification should include a facility for a
"stop list" of undesired words (that facility can then be used to process
"-" as an undesired word). The facility can be implemented using a
member of the UNIX grep family to remove undesired lines after
rotate and before sort.

Robustness

If an input line contains unexpected blanks, the rotate program
generates superfluous rotations; unexpected tabs confuse print. A
prototype program need handle only well-behaved input; a production
version must be more robust.

www.manaraa.com

310 Exercises in Software Engineering

Performance

The KWIC program handles only a few input lines per second; we could
have assigned the students the task of making it more efficient. Instead,
we made the more important point that efficiency is not an issue in many
systems: a simple back-of-the-envelope calculation showed that the
CPU time spent optimizing the program would far outweigh savings over
many runs (and programmer time is infinitely more expensive anyway).

We discussed several other extensions suggested by the UNIX per
muted index program ptx, such as parameterizing the spacing and
preparing output suitable for input into document production systems.
The class hour ended with a general discussion of issues such as
problem definition, modularity, maintainability, performance, and build
ing and using software tools.

Several weeks after the discussion, we examined a closely related
problem. One of us described the suite of AWK programs he had built
the previous evening to prepare the index of a book (Bentley [10]). Al
though the input and output were fundamentally different, the program
suite was similar in spirit, and the above rotate program was quite
similar to the indexer's rotate program that transformed "arbitrary
term" into "term, arbitrary".

This exercise consumed two hours in class and four or five out of class
hours. It isn't a typical exercise in standard software engineering
courses; it involved no project planning, requirements analysis, formal
specification, extensive coding, or documentation. Rather, the students
built and used a small program to solve a task they found interesting.
This exercise also exposed the students to the following.

Real Programs

The cadets studied both the production-quality UNIX permuted index
program ptx and a single-shot program for a related task (index of a
book).

www.manaraa.com

Bentley and Dallen 311

Implementation Issues

The exercise gave concrete experience in exploring the design space of
KWIC programs; the implementation gave immediate context for a
general discussion of issues of modularity and maintainability. We
preached rather little in our course about topics such as "building and
using software tools" and "rapid prototyping"; we instE}ad gave th~ stu
dents useful tools and required them to build interesting programs in a
hurry.

A User's View

Students in typical software engineering classes are lucky to be able to
run their system once on the last day of the semester; our students
spent a large fraction of their time using the program they built.
Parnas's paper provided an initial specification of their program; their
experience in using that version was the most important input for the

specification of the next version. We did not lecture them to "grow
software rather than build it;" we made them do it.

The Professional Literature

This exercise started and ended with Parnas's [75] excellent paper on
modularity; we kept a potentially hand-waving discussion of program
ming methodology concrete by relating it to a small, but subtle, program.
(Our discussion followed Zave [108] in comparing Parnas's approach
with Kernighan and Plauger's.)

Overview of Exercises

In this section we will briefly sketch several other exercises from the
course, in decreasing precision. We chose our examples to represent
the breadth of the course, rather than by a random sample (the KWIC
program is the most typical of the exercises).

Sorting

A two-week unit was devoted to sorting (Six one-hour lectures, from
Monday of one week to Friday of the next week). Because the cadets
had previously studied that topic in a course on data structures, Lecture

1 reviewed sorting algorithms. The assignment following that lecture

www.manaraa.com

312 Exercises in Software Engineering

was to modify a twenty-line C implementation of Hoare's quicksort algo
rithm. (This was the only exercise that involved programming in a lan
guage other than AWK. Our approach to sorting was unique among the
exercises in its emphasis on performance; C is much faster than
A WK-about two orders of magnitude for this problem - and has more
predictable performance. We restricted the students to an "AWK
subset" of C, with only minor problems.)

In Lecture 2 (Wednesday), we reviewed the exercise and assigned the
next task, which was due Monday: a "sorting contest". (The winning
team was promised a grade of "A+" and a surf-and-turf dinner at the
Officers' Club.) Each team of two students3 was to turn in two files: a C
program to sort 5000 integers, and an input data set of 5000 integers.
Each program was assigned the "score" of the sum of its run time on all
input files; low score wins. Thus students were motivated to produce
both efficient programs and inputs that would exploit weaknesses in
their colleagues' routines. (Similar contests might teach Quality As
surance - given a specification, each team submits a program and an
input to stress it - or specifications - each team submits a specifica
tion and a "wrong" program that might satisfy a poorly written
specification.)

Lecture 3 was canceled to compensate for programming time, and the
programs were due on Lecture 4 (Monday). That lecture was a discus
sion of the techniques used by each team, and a prediction of results.
We graded the programs that evening and reviewed them in the next
class. The winning programs - two tied - applied a few simple op
timizations to clean initial programs; programs that were more baroque
for the sake of "efficiency" were fast on the input supplied by their team
but slower on other inputs.

Linderman [65] describes his experience in speeding up the UNIX
system's disk sort by a factor of two; it was assigned as reading for

3The teams were not intended to simulate software development teams. Rather, having
a partner allowed some work to be partitioned, and encouraged discussing ideas before
coding them.

www.manaraa.com

Bentley and Dallen 313

Lecture 6 (Friday). That class period was devoted to a brief presen
tation by Linderman (on aspects of his experience not described in the
paper) followed by a question period.

The five lecture hours discussed the theory of sorting (1 hour), design
alternatives (1 hour), implementations (2 hours), and a production sort
program (1 hour). Outside of class, the cadets learned the C language
(2 hours), designed and coded an interesting and useful subroutine (8
hours), and read a case history of a production program (2 hours).

Little Languages

Several weeks at the end of the semester were devoted to the study of
small, special-purpose languages and their processors. Throughout the
semester several students had complained about the succinct (SOme
even said cryptic) arguments used by the UNIX system's sort com
mand. We therefore assigned the task of designing a more appropriate
language to describe sorting. (Our class emphasized the importance of
using and building tools.) A sort program might be specified as

input infilel
input infile2
output outfile
field 2

ignore case
ignore nonascii

field 4
compare numeric

They wrote AWK programs (a few dozen lines long) to translate from
their languages into the language of the existing sort program; the out
put for the above program is

sort +lfi -2 +3n -4 -0 out file infilel infile2

That was easily accomplished in two hours of in-class time and a few
hours of programming. (Previous exercises concentrated on designing
the internals of sort packages; this exercise turned to the user interface.)

The next set of linguistic exercises dealt with a language for drawing
simple pictures. We provided a set of routines for drawing pictures in
arrays of characters; the students designed and built a user interface.

www.manaraa.com

314 Exercises In Software Engineering

The final "little languages" we studied were the interpreter and as
sembler for a simple single-accumulator, one-address machine. This
program reads a file of input numbers (terminated by zero) and writes

the sum on the output file.

print sum of input numbers (terminated by zero)
input get # Read n,

jz done # done if zero
add sum # Add old value of sum
st sum # then store the new value
j input # Loop

done ld sum # Load sum
put # then print it
halt

sum const 0

Assemblers of this complexity used to be standard fare in "systems
programming" courses; they taught several important lessons, including
lexical analysis, symbol tables and multiple-pass algorithms. They also
taught how to organize a large program (as a college junior, one of us
wrote an assembler and interpreter for a similar machine in about 1000
lines of ALGOLW).

A Monday lecture described the assembler and the target machine; the
assignment due Wednesday was to implement them both in the
simplest possible code (we encouraged the cadets to concentrate on
correct inputs and ignore issues of error handling). Our implementation
of the assembler and the interpreter required 30 lines of AWK; the
cadets took under 50 lines. (The emphasis on small size was a
response to ornate solutions to previous problems.) In Wednesday's
class we discussed the students' solutions, reviewed our program, and
presented a larger program (80 lines) with thorough error checking. On
a Friday field trip to Bell Labs, Brian Kernighan described to the cadets
how he used similar techniques to build a microcode assembler in AWK
for a special-purpose simulation machine.

Writing Aids

Steve Johnson originally implemented the UNIX system's spell

program as a one-line shell script; Doug Mcilroy later rewrote it in C to
be particularly efficient. The cadets studied the history of that program

www.manaraa.com

Bentley and Dallen 315

as sketched in Column 13 of Bentley [10] and as described in detail by
Mcilroy [69]. We assigned the problem of implementing a prototype
spelling checker as a shell script and as an AWK program.

After a cadet pOinted out several horribly misutilized words in a paper
(including such gross offenders as "prioritize" and "utilize"), we assigned
them to read Strunk and White's list of commonly misused words in The

Elements of Style. They then implemented a simple styl.e program to
identify such words and suggest alternative phrasings (such as "Try
'used' instead of 'utilized'."). The cadets' first programs were effective
but very slow; their second versions were efficient enough to find some
glaring errors in long faculty manuscripts stored online. The students
implemented several other small programs to deal with text.

Evaluation

Was our course successful? The fact that we are writing this paper
shows that it gave us a warm fuzzy feeling; that sentiment was also
expressed in the course evaluations by the students. Fortunately (or
perhaps not), the West Point administration provides us with a more
stringent test of success: can we convince the nation's oldest engineer
ing school that software engineering should be granted the status of an
engineering discipline?

The Military Academy requires all cadets, regardless of major, to com
plete a two-semester design sequence, chosen from any of the tradi
tional engineering disciplines (such as civil, electrical or mechanical).
The courses concentrate on principles of design and experience in ap
plying those principles to interesting problems. The two-semester com
puter science design sequence (entitled Computer Systems
Engineering) is a fairly typical software engineering course covering
conventional software engineering principles and practices; it has not
been accepted by the Academy's academic board as an acceptable
design course.

Traditional engineering programs integrate three levels of study. The
foundations are the science underlying a particular discipline, such as
the study of strength of materials or device physics. The second level

www.manaraa.com

316 Exercises In Software Engineering

consists of design courses, where the various concepts are integrated
and applied to design projects (within the Academy, this is the domain of
the engineering design sequences). Collateral courses address
management issues, such as CPM and PERT techniques, site layout
and engineering economics.

Within this context, software engineering courses suffer from two
shortcomings; the lack of a clear underlying foundation of principles and
theory and, consequently, an emphasis on the management of the
design process rather than the design. The concepts and principles
associated with most software engineering courses are actually distil
lations of practical experiences and lessons learned, rather than firm
science. While this does not reduce the importance of software en
gineering to a computer science education, the gap between foun
dations (data structures, database design, language concepts, etc.) and
design management remains substantial by the standards of a mechani
calor electrical engineer. Course projects in the foundation courses,
while often complex, are designed to illustrate certain concepts and
rarely integrate a wider spectrum of principles. Software engineering
course projects, in order to achieve the goals of applying life-cycle con
cepts, typically have uninteresting design considerations to permit
completion in two semesters. If the project emphasizes "real-world"
tasks (as in the Academy's typical sequences), program design other
than interfacing is most often trivial. Much is learned, but not about
design.

Similarly, prototyping and the use of available tools are both mainstays
of engineering design but are not well exercised in conventional
software engineering courses. A civil engineer does not redesign an
I-beam when building a trestle bridge, yet many software engineering
students reconstruct each line of code from scratch.

We hope that the exercises that we have emphasized in this paper will
be an important part of a future design course for computer scientists
that is acceptable to the Academy. The next section shows how the
exercises address several of the problems mentioned in this section.

www.manaraa.com

Bentley and Dallen 317

Conclusions

We have a great deal of respect for typical software engineering
courses; they currently playa central role at both the undergraduate and
master's level. We would be hard pressed to suggest discarding any
component of the current classes. We do feel, though, that the kind of
exercises we have described in this paper could play an important role
in future classes; they offer important content that is not stressed
enough in typical classes.

Software Experience

The best way to get software experience is by working on the develop
ment of a real software project. Schools can provide several good sub
stitutes, including the ever-popular team project, case studies, and ex
ercises. We are confident that the exercises allowed the students in our
class to make at least ten times as many mistakes as students in typical
software engineering classes; the nature of the exercises allowed them
to learn from this experience without their grades suffering.

Case Studies

Architects study the design histories of real buildings and aeronautical
engineers study the design histories of real airplanes. Yet many
software engineering courses have relatively little in the way of case
histories of interesting software. The "Case Studies" section of
"Communications of the ACM" describes large systems in general
terms. Like the civil engineer who reads the history of a large bridge
and then captures its interesting pOints in a balsa wood model, we used
small exercises to reinforce lessons taught in large case studies.

Design Experience

Our students studied project organization and management in other
classes; we concentrated on the design of software artifacts. In our
class they studied many clever computing mechanisms, and made
many design choices. Their experience taught them that thinking hard
about a complex problem often yields a simple and elegant solution.

Application of Science to Engineering

The programming exercises provided an opportunity for the seniors to

www.manaraa.com

318 Exercises in Software Engineering

integrate material from several previous courses in interesting design
problems (sorting, for instance, involved both algorithms and user
interfaces). Such integration is an important component of typical en
gineering undergraduate programs, and is absent from typical software
engineering classes.

Common-Sense Engineering

The exercises allowed us to make many important pOints without resort
ing to platitudes. Instead of repeatedly exhorting students to "Design
with components," the exercises showed how components could turn a
week-long task into an hour's work. Instead of exhorting to "Keep it
simple," the exercises made them do so.

Fun

Software engineering has been defined as "the process by which all the
fun is removed from computing"; our course did not suffer that sad fate.
Fun is important for any field, both to attract the best students and to
establish professional habits that can last a rewarding technical lifetime.
The driving force in our class was the sheer joy of creativity; we also felt
free to resort to devices such as contests, games, and wonderful litera
ture.

We feel that similar exercises could be merged with the material in cur
rent software engineering courses to form a one-year design sequence
in software engineering. The Fall Semester would cover the software
tools to be used later in the course and part of the lecture material in
current courses; exercises would be used to reinforce the abstract dis
cussion. The Spring Semester (and perhaps the last part of the Fall)
would be devoted to a large programming project, preferably one that
builds upon (and uses) the small exercises studied earlier.

Acknowledgments

We would like to thank AI Aho, Stu Feldman, Brian Kernighan, John
Linderman, and Norm Schryer for their various contributions to the
course. We are indebted to AI Aho, Brian Kernighan, Doug Mcilroy,
Chris Van Wyk, Vic Vyssotsky and Pamela Zave for helpful comments
on this paper. And to the fifteen cadets who suffered through the
prototype offering of EF 485, thanks for your enthusiasm and effort.

www.manaraa.com

Bentley and Dallen 319

Appendix
Discussion of the Tools

The UNIX system and the AWK language were essential to the success
of the course; the exercises could not have been implemented in C or
Pascal. A similar flavor might be available from other common tools,
such as an integrated Lisp environment or a database system.

The UNIX system is well-known for its support of building and using
tools. The library of existing filters and the use of pipelines allows the
quick-and-dirty construction of useful programs, without exacting the
substantial overhead normally expected in interfacing and modifying ex
isting tools. Because the UNIX system is not currently the normal

teaching environment at West Point, the cadets spent the first few
weeks of the course learning the system. Although we felt that the time
was well invested, it would be substantially reduced at schools where
the UNIX system is standard.

Before we taught the course we decided that the students should learn
exactly one new programming language; Pascal (which they knew) was
simply not appropriate for the exercises we had in mind, and we couldn't
afford the time to learn two languages. We seriously considered C, and

finally chose the June 1985 release of AWK. We are delighted with that
decision. Although AWK is significantly slower than C for many tasks, it
provided the following important advantages.

An Implementation Language for Simple Filters

The rotate and print filters in the KWIC program were implemented
in a few lines of AWK; Kernighan and Plauger implement rotate in 44
lines of Pascal and print in 34 lines. We believe that this is typical:
AWK programs are an order of magnitude shorter than their counter
parts in Pascal, C, or Ada.

An Implementation Tool for Little Languages

We introduced the students to a stylized use of AWK's features that
allowed them to implement little languages with little effort (field defini
tions drive lexical analysis, pattern-action rules provide simple syntax,
and associative arrays implement symbol tables).

www.manaraa.com

320 Exercises in Software Engineering

An Introduction to Non-Algol Language Constructs

AWK introduced the students to many constructs outside the Algol
heritage, including associative arrays and powerful string operations
(including many operations on regular expressions). AWK encourages
a coding style far outside the students' previous experience in Pascal,
Ada and assembly.

An Introduction to C

Two months into the course, we introduced the C language as an AWK
subset with minor syntactic changes and explicit type declarations. The
cadets were able to implement a substantial sorting program in C with
little difficulty.

Encouragement of Simplicity

Because AWK is well integrated into the UNIX environment, its
presence encouraged the students to build a small filter that they could
combine with existing tools. Because many of their filters required only
a few lines of code, we encouraged them to reduce their programs to
the bare essentials; that is much easier with a 10-line AWK program
than with the corresponding 100-line Ada program.

www.manaraa.com

Section II
Part 4

Future of Software Engineering Education

The next ten years will see radical changes in software engineering
practice. In this part, Mary Shaw and George Rowland take non
traditional views of software engineering and think about the shape of
the discipline in the 1990s. W. Richards Adrion and Bruce Barnes
review previous and current National Science Foundation research
funding in software engineering and the prospects for continued sup
port.

www.manaraa.com

Trends in National Science Foundation
Funded Research and Their Impact on

Software Engineering Education

w. Richards Adrion and Bruce H. Barnes
National Science Foundation

Abstract. Trends in software engineering education are discussed
from the point of view of the changing environment for both education
and research in computer science and engineering. Programs of the
National Science Foundation and other federal agencies along with
substantial contributions from private industries and foundations have
dramatically changed the research infrastructure. These changes
have generated important consequences for both graduate and under
graduate education.

Introduction

The National Science Foundation has as a mission insuring the health
of U.S. science and engineering through support of science and en
gineering research and education. The Division of Computer Research
is concerned with basic research in computer science and engineering,
and provides support for this field through grants to academic institu
tions for the support of individual or small groups of investigators.
Through the Coordinated Experimental Research and the Computer
Research Equipment Programs, support for equipment, support staff
and other infrastructure categories important to research and the educa
tional environment is provided. An important part of all of this grant
support is in the form of graduate and undergraduate student stipends.

Our years at the NSF have given us a unique perspective on the chang
ing environment for graduate education in computer science and en

gineering, and in software engineering in particular. One of us (Barnes)
has directed the Software Engineering Program at NSF since its incep
tion. The other (Adrion) has directed the Coordinated Experimental
Research Program, the CSNET project, and the NSFNET project. Both
of us have served in a number of other NSF programs as well. The
need to coordinate the NSF programs with those of other agencies and
with industrial firms and private foundations has given us a unique
perspective. These experiences enable us to observe the growth of

www.manaraa.com

Adrion and Barnes 323

computer research, the rapid changes in the structure and makeup of
the field, and the trends in research investigations.

We hope that our observations will provide some insight into the en
vironment which exists for software engineering research and educa
tion. Some of the trends we see affecting software engineering
research and education are: a considerable increase in the use of net
works and parallel computers; more emphasis on the total software
lifecycle in evaluating the value of a project; an increase in the sophis
tication of the mathematical analysis used in research; and increased
use of the computer as a research tool in computer science research.

In our view the goals of any Masters Degree program in Software En
gineering should be similar to those espoused in other reports on
software engineering programs. These reports point out the need to
add to the student's prior skills and knowledge sufficient new material
and experiences to qualify the graduate to assume a position of tech
nical leadership on a software development team. We also expect that
he or she will be well enough educated to be able to continue to learn
and adjust to this rapidly changing field.

Changes in the Computer Science Research
and Educational Environment

There are a number of programs in the federal and private sectors
which have influenced and changed the academic infrastructure for
computer research. Among these are the Computer Research Equi
pment and Coordinated Experimental Research programs of the NSF
Division of Computer Research; the equipment programs administered
through the NSF Division of Design, Manufacturing, and Computer En
gineering; the NSF Engineering Research Centers Program; the NSF
Office of Advanced Scientific Computing; the Department of Defense
Advanced Projects Research Agency's Information Processing Tech
niques Office (DARPAlIPTO) and Strategic Computing Initiative; the
DoD Software Technology and Research (STARS) Program; the DoD
Strategic Defense Initiative; the DoD Office of Naval Research's Special
Opportunities Program; IBM's Academic Computer Information Systems
(ACIS) programs; Digital Equipment Corporation's External Research

www.manaraa.com

324 NSF Research Impact on SE Ed

Programs; the System Development Foundation; many state and local
government programs; and workstation manufacturers too numerous to
list. We can't describe all these activities or even a few in much detail,
but we would like to try to give you a flavor.

The NSF Coordinated Experimental Research (CER) Program was
created in response to the "crisis" in academic computer research. The
research community reported to NSF through the Computer Science
Advisory Committee and through reports such as the Feldman Report
and the Snowbird reports that serious problems were arising in the field.
Chief among these were the lack of or rapid deterioration of research
facilities and the flight of faculty and graduate students to industrial
laboratories. It was recognized that only three institutions (Carnegie
Mellon, MIT, and Stanford) were adequately capitalized to perform ex
perimental research, and these had adequate support only as part of a
few major DARPAlIPTO projects on the campuses. Remote access to
these facilities for experimentation was usually not feasible because of
the nature of experimental computer research and because access to
the research results and accompanying discussions was available to
only a few institutions over the DoD managed ARPANET. These
problems caused computer scientists in academia to turn to primarily
theoretical research resulting in even fewer trained scientists being
graduated.

The NSF response was to create the CER program with three main
thrusts. First the CER facilities program was developed to provide long
term (five year) support for facilities including equipment, maintenance,
supplies, and supporting technical staff and long term support for major
multi-investigator projects in experimental computer science. A second
activity, to assist the research community in developing networking ser
vices in support of computer science research, resulted in the develop
ment of CSNET. The third activity, directed towards the problem of at
tracting experimentalists into a university environment, was a budget
casualty later replaced with the much broader Presidential Young Inves
tigators Program.

www.manaraa.com

Adrion and Barnes 325

Through 1985, NSF has committed $75 million to 22 institutions for the
support of experimental computer research. In addition, DARPA has
major contracts with MIT, Stanford, Carnegie-Mellon, and California
Berkeley. These contracts include support for extensive experimental
computer research facilities. While DARPA also has substantial con
tracts at Columbia, California Institute of Technology, UCLA, and others,
these contracts provide only specialized or minimal faCilities. When
NSF began the CER activity, it expected to provide support at ap
proximately fifteen institutions. With more than seventy PhD granting
departments of computer science and engineering, it was estimated that
25-30 would require research facilities of the magnitude provided by the
CER Program. In 1982, the DoD planned to expand their support,
through ONR and DARPA, to include 10-15 institutions. This DoD
program never materialized, but DARPA has upgraded facilities of their
major contractors and provided an expanded number of smaller
($250-300K) equipment contracts. ONR has been able to provide a few
"Special Research Opportunities" contracts in computer research which
also include some facilities support. Without the planned DoD
programs, the CER Program grew in an attempt to fill the need.

The DARPA Strategic Computing Initiative has a strong infrastructure
component. The MOSIS fabrication facility developed by IPTO has
been expanded and upgraded. The ARPANET continues to provide a
communications testbed as well as serving as a medium for the ex
change of information and software. DARPA/SCI is developing with
university-industry consortia a number of radical new processor ar
chitectures, many of which it plans to make available to the general
community in a next phase.

The NSF/CER, DARPA/IPTO, ONR, and various DoD and NSF equi
pment programs have benefited immensely from the rapid change in
cosVperformance of computing equipment and the willingness of the
manufacturers to develop relationships with the academic community
through joint research, eqUipment discounts and equipment donations.
Most major research institutions are now reasonably well equipped with
cd minicomputers and workstations. Special purpose processors such
as the BBN Butterfly, the Intel IPSC, and the NCUBE hypercube and

www.manaraa.com

326 NSF Research Impact on SE Ed

special purpose systems such as robot manipulators, image processors,
graphics systems, and database machines are being placed in a num
ber of universities.

The last few years have seen major changes in the academic computing
research environment. Institutions have moved computer science up to
a high level of priority, resulting in new facilities, laboratory space, and
professional support staff growth. Coupled with the programs in the
federal and private sector, these actions have resulted in a completely
new environment for teaching and research in software engineering.

Trends in the Software Engineering Research
and Education Environment

We see a number of trends in research and education as a result of the
changing academic computer science infrastructure. First, the
widespread availability of powerful workstations has made possible the
study, use, and development of software tools, methods, techniques,
and processes in a contained and controlled environment. In much the
same way that computer center machines are not suitable for computer
research because of the service requirements, departmental minicom
puters, now carrying the communications, management, document
preparation, and general computing load, cannot be used for sophis
ticated software tools research or for reasonable educational software
tools experiences. Research and education in this area are also helped
considerably by the availability of powerful user interfaces and interface
development tools. Bit-mapped graphics and pointing devices alone
have greatly reduced the learning curve for new tools as well as
provided the researcher with better insights into his/her problem space.

Beyond workstations, it is clear that software engineering has been a
leading field in the general use of computing as a research and educa
tional tool. To properly train new software engineers and to maintain
adequate laboratories for research, it will be necessary to continue in
vestment in computing hardware, software and systems. For example,
software tool and method research and development involve the use of
computer software which takes as data other software, for both the
analysis and synthesis of software. Tool use, once the province of

www.manaraa.com

Adrion and Barnes 327

academia, has spread to industry. This trend requires that state of the
art tools become an integral part of any software engineering cur
riculum. As tools, "toolboxes" and "environments" grow more plentiful
and powerful, the need for academic research laboratories to develop,
procure, and maintain these tools becomes even more imperative.

One of the most significant trends that we have observed in watching
the research funding patterns is the shift from uniprocessor-based
research to work with network, distributed, and parallel computation.
This is very evident in recent NSF Computer Research Equipment
program actions. Figure 1 illustrates the type of equipment supported
by the grants frorn this program. Note the shift from mainframe com
puter facilities to network organization of computer resources. The CER
Program has experienced an even greater emphasis on parallel and
distributed computing with more than 75% of the CER facilities support
ing this kind of research.

80 81 82 83 84 85

Mainframe 13 4 6 4 6 5

Network 2 5 5 10 8

Parallel o 1 o o o 1

Special Purpose 2 3 5 4 3

Total 17 9 12 14 20 17

Figure 1: NSF/CRE Actions by Year and by Equipment Type

Many other projects supported by NSF and certainly by other agencies,
foundations, and industrial firms involve specialized or unique computa
tional structures. Almost all experimental projects involve distributed
computing in some way, many times in a heterogeneous environment.
The implications of this trend for software engineering education are
significant. The student will need a better understanding of computer
architecture and structures, better understanding of how algorithm and
programming language structure relate to distributed and concurrent

www.manaraa.com

326 NSF Research Impact on SE Ed

processing, and an appreciation for the difficulties of expressing
problems in a manner suitable for parallel solutions.

Dealing with computer software that is running in a parallel environment
requires a deeper level of abstraction than one usually encounters in
software engineering. Many of the projects supported by the NSF Divi
sion of Computer Research involve considerably more sophisticated
mathematics than was the case a few years ago. Deep logical analyses
and abstract mathematics are employed in program verification, pro
gramming language semantics, concurrent operating systems and data
base modeling. Both computing theory and artificial intelligence
research are requiring the use of richer mathematical tools in dealing
with the models and processes employed in computer science. More
mathematical ability, training and experience will be required of the stu
dent. Mathematical talent matures slowly. Thus the student must have
a strong background when beginning the program and this background
must be enhanced by courses and projects.

A clear trend in the proposals being considered by the NSF Software
Engineering Program is the emphasis on the total software lifecycle.
This can be illustrated by the current research in software testing and
evaluation, where the goal of most projects is to find test data and test
ing policies that can be used throughout the total software Iifecycle,
rather than solely at the traditional testing stage following coding. In
software performance evaluation, researchers are designing perfor
mance models for the early stages of software design which carry
through to implementation and maintenance. While the software
Iifecycle has always been emphasized in software engineering, there is
a trend towards formalizing the software process by identifying the infor

mation requirements and by requiring procedural consistency through
out the lifecycle. This emphasis on the software process and the
Iifecycle as a whole needs to be reflected in the courses and the cur
riculum. At a minimum, coordination and cooperation among the faculty
will be required, and perhaps a major reorganization of the curriculum.

Two other trends are having significant impact on the software engineer
ing student and researcher. The availability of tools like the MOSIS

www.manaraa.com

Adrion and Barnes 329

fabrication facility makes it possible for the student and researcher to
implement algorithms directly in silicon. The line between hardware,
firmware, and software is rapidly blurring. For education this means
handling considerably more complexity to properly prepare the student.
For the researcher this brings exciting possibilities for tradeoffs between
fast "hard" implementations and flexible, but slower "sofr' implemen
tations in the software development process.

Finally, these new facilities have opened the door for major projects
involving new systems, architectures, and ideas, projects involving
many people, undergraduate and graduate students and researchers,
faculty, and full-time researchers. These projects afford the software
engineers at last a real opportunity to participate, observe, and measure
"real" major projects right in the academic environment.

Conclusions
From these trends we see that the graduate of a software engineering
program must not onl}! be an expert in the design and construction of
software, but must also be strong analytically, be exposed to major
projects, learn the technology trade-ofts, and be familiar with state-of
the-art workstations, systems, and software tools. Of course, the
graduate must also communicate and manage other workers effectively.
All of this puts considerable strain on the curriculum, the faculty, and the
students. In order to accomplish all this, the student must be capable,

motivated, and have a good mixture of academic and industrial ex
perience. The faculty must develop a curriculum that is well-structured
and coordinated.

These are exciting times in academia for computer science. Many new
opportunities are opening up for experimental research. With these
comes the promise of developing and refining software engineering as
an academic subdiscipline through the educational and research
processes. The trends we have observed at the National Science Foun
dation have been noticed by others as well. We feel strongly that these
trends are pointing the way for the future of software engineering.

www.manaraa.com

Software Engineering:
Anomalies in Today's Education
and a Prospectus for the Future

George F. Rowland, Jr.
United States Naval Academy

Abstract. "The only things that are new today are in the history that
we have forgotten." The purpose of this effort is to set up a beacon in
front of a few of the pitfalls that exist and lie ahead in the advance of
software engineering as the focus of computing for the late 80's, 90's
and into the 21st century.

The United States Government, the Department of Defense, and the
Navy specifically have and are spending literally billions of dollars on
software development, maintenance, and training. Yet these billions
are delivering orders of magnitude less returns in field equipment
efficiency, goal attainment, and mission-critical systems being
delivered on time. The software crisis or gap in software management
tools to handle tomorrow's problems today can be met and bridged.
This paper will introduce a few of the tools that exist today, and
describe how using current technology, these tools might enable our
scholars, future scholars, and professional programmers to conceive,
build, and manage the programming systems needed.

Introduction

Software Engineering Education: A Point of View

Software engineering is not something just thought of; since the early
60's formally, and much earlier in an abstract manner, designers and
engineers have seen the need to apply sound engineering principles to
the development of large software projects. The early techniques of
providing formal and semi-formal languages for specification of require
ments, software design representations, top-down development and
software cost estimation - to mention only a few - are available, but
the task yet seems to be too difficult. It is the rule rather than the excep
tion for systems to be delivered late, over budget, and not within the
standards of specification, reliability, or maintainability. The bottom line
may be that the people implementing the techniques are not intellec
tually able to understand their use and implications in a design. [90, 82]

There is a shortfall somewhere. It must be defined, located, and eradi
cated.

www.manaraa.com

Rowland 331

Part of the definition may lie in common sense topics such as manage

ment science, problem solving, communication skills, and the psychol

ogy of the education process. Certainly it is a given that a firm theoreti

cal understanding and expertise must exist in the process; but alone,
that foundation cannot translate immediately to the real world.

Two major ideas are: (1) engineering sciences are based on hard

premises that are rooted in real, representable, quantifiable, and prov

able entities; and (2) the environment of the software system may not
always fit the engineering model. [60]

What is the synergism of a top down design versus that of an object

oriented design? Can the designer better fathom the synergism of one
over the other? [90]

Software Engineering Anomalies:
Opinions on Requirements in Advanced Education
for Computer Curriculums

All the power of expressive languages and object-oriented languages

and methodologies can lead directly to a new spaghetti code. If pro

gramming tool sets are not properly constrained and not properly

managed (enforcement of standards in the production of tools and an

overall tool management methodology), anarchy and chaos of disorder

of purpose will cloud the overall design of problem solutions. Sound
engineering premises and mathematical logic must be used in building

tool structures. Will the structures crumble or decompose due to inade
quate support? Can the mentality of top down design coexist with an
object-oriented graph structure methodology? When does the discon

nect occur between the ability to comprehend the whole of a problem

and the need to functionally understand a problem and its end result?

What is the application of interpreter-driven, interactive run time traces

of computer science concepts? How do we use quasi-tools such as

Turbo Pascal™1, execution Pascal, etc., in expressing the interrelations

in computer engineering design?

1Turbo Pascal is a trademark of Borland International, Inc.

www.manaraa.com

332 Anomalies and Prospectus

Views on the Subject of Controversy

Computer science is a theoretical subject area devoid of the practical
world, and all those implications attributed to computer science that are
not provable are not under the purview of computer science.

• Software engineering is the study of the practical problems
faced in developing large software systems.

• Software engineering is the study of the hardware-software
interface.

• Computer science is the study of the development of sys
tems software.

• Computer science is the study of hardware and/or software.

Software engineers say that computer science works in a void and has
no appreciation for the "real world" of software development. Computer
scientists say that software engineering presents means of development
that have no sound theoretical principles.

In implementing Software Engineering Education, thought should be
given to the intellectual maturity of the student. If the student has been
provided a firm base in the theory of "why and why not," then the ap
plication of "how" will have meaning and relevance. The instruction in
software engineering should provide understanding of how the theory
can or should be applied and show how the theory is a useful tool in
software engineering. [90], [82], [4]

Choice of Methodology: Does It Make a Difference?

Top down functional design. The system is designed from a func
tional viewpoint, starting with a high-level view and progressively refin

ing this into a more detailed design; this methodology is exemplified by
structured design and step-wise refinement.

Object-oriented design. The system is viewed as a collection of ob
jects, rather than as functions, with messages passed from object to

object. Each object has its own set of associated operations. Object
oriented design is based on the idea of information hiding.

www.manaraa.com

Rowland 333

Data driven design. This methodology suggests that the structure of a
software system should reflect the structure of the data processed by
that system. Therefore, the software design is derived from an analysis
of the input and output system data. [90], [16], [99]

Advancement of Computer Education in
the 90's and 2000+

We have a good start because our ideas are aimed in the right direction,
but we do not have a good mechanism in place to properly follow the
path in that direction. There is a need for a new mentality in applying
systems design. When we move from small programs to larger
programs and even systems of programs or computer systems, it will be
critical to understand what is added to a system by the transitions
across the system.

It is good to look at the number of graduates from computer science
programs, but you should also question or at least analyze the quality
and fiber of the graduate with respect to practical applications of his/her
education and knowledge of the essence needed to project current tech
nology onto new generations of computer systems and problems. Fu
ture experts must be able to assimilate to future technologies and to
imagine the nature of computer systems exploiting those capabilities.
What even are the new classes of problems?

We live in an environment that is so competitive that missing a single
skill in preparation could be disastrous. Graduate computer science
programs must be challenged and bolstered to produce those skills in
their alumni. The graduates must be able to cut the fat as well as the
cancer from projects. They must be able to change software design and
implementation from an exercise in trial and error artistry to an applied
engineering design according to scientific principles.

The motivation is the law of the contrapositive, the inevitable, and the
decadence seen in an earlier great society. Can we afford cost overrun
ad infinitum, loss of life and product failure, unreliability and a hopeless

life of patches? Typical graduates may not have their designs subjected
to needs to protect life or a nation's security. But my personal perspec-

www.manaraa.com

334 Anomalies and Prospectus

tive sees space stations, transportation and life support systems reliant

on secure, robust, and simple designs. Look to the nation to sustain

itself, not govern to provide sustenance. By the same token, is support

ing a company's livelihood through maintainability that borders on

redesign?

Who or what are the culprits? Possible candidates include inadequate
coding of a design representation, imprecise testing, and failing to

recognize what is not understood. Applying artistic standards will not

force scientific and engineering results, nor matches of end product to

specification.

Maintenance of programs has been the single largest cost to the tax

payer. This is largely, I contend, because there is no understanding of

the purpose and relationships within a project beyond a few thousand
lines of code.

Observations on Problems with Current Design

(These are tools to build the mentality.)

Let's relate this to the object-oriented model for networks and circuit

design (Le., fields and domains of protection and formal relations and

ordered sets).

• Relate this to Ada object-oriented tools, separate compila
tion, and libraries .

• Relate this to Ada environments and mandated executable
methodologies (not a panacea but a start) .

• Study standards via frameworks and templates.

• Relate this to developing standards for enforcement of
methodologies and the opponents and proponents of same.
[16], [66], [49]

What are we talking about?

• Is it an art?

• Is it an engineering science?

• Is it mandatory, requiring certification, and if so, then what
criteria prepares a graduate for certification?

www.manaraa.com

Rowland

More on Advancing Computer Education
into Modern and Future Times

335

That is all the history, and, like it or not, we are living in the past in
computing systems and problem solution design and implementation.
Our challenge as professional educators is to bring down the myth of
the monolithic, expensive, powerful computer and replace it with a more
powerful, more economical, more reliable, and above all, more manage
able system of computers. A world concerned with more complex
problems will require a "quantum" jump in information processing to
meet management requirements. The computers can assist, but only
insofar as they are recognized as sophisticated tools and as they are
reformed and organized to meet specific needs for processing data.
The need for standards will become clear as communications among
the components of such a system grow. Data elements, communica
tions protocols, high level languages and more - all must be defined,
standardized and conformance insured if large and flexible systems are
to prove viable and costs are to be held to acceptable levels. One
concept must always govern planning - that it consider the future. Ig
noring the future results in inadequate, outmoded systems continually in
need of costly change and updating, and never quite in tune with the
work requirements. Concomitantly, no innovation or standard should be
rejected as too costly without careful evaluation of the "cost of not dOing
it." [52]

In order to survive today, we must not only use new tools and methods,
but also there must be an arm of enforcement of application of the
methods; this may be viewed as the locus of paths of the tool set and
method set and the space of these paths is constrained, knowable, and
decomposable. The natural laws of the space must derive all paths,
given an instance of tool and method sets. [75]

Some design ideas are available:

.. Top down design with stepwise refinement.

• Object-oriented design .

• Data driven design.

www.manaraa.com

336 Anomalies and Prospectus

Some implementation and design background:

• The programming process.

• Problem solving viz-a-viz computers.

• Engineering methods.

• Systems design steps or phases.

• Management theory phases or steps.

• Life cycle steps and model.

• Formal logic steps.

• Empirical information about designs.

• Human psychological reasoning process.

• Laws of algebra from commutative, associative, distributive,
and identity to deductive and inductive proofs and formal
inferences and calculuses.

• What are the formal criteria for computer engineering or
scientific certification today?

Some adjunct and interesting factorials:

• Applications to space time continuum.

• Steps of top down design.

• Steps of bottom up design.

• Steps of object oriented design.

• Steps of data driven design.

• Algorithm analysis; perhaps more important than ever. The
canned (previously designed, built, compiled) tools must be
analyzed algorithmically for applicability and integrity. One
bad apple spoils the barrel. [16], [75], [60]

The Engineering Design Process

1. Problem formulation - the problem is defined or
described in broad terms without detail.

2. Problem analysis - the problem definition is refined to
supply essential detail.

3. Search - a set of potential solutions to the problem is
gathered.

4. Decision - each of the potential solutions is evaluated
and compared to the alternates until the best solution is
obtained.

www.manaraa.com

Rowland

5. Specification - the chosen solution is described in detail.

6. Implementation - the finished product is constructed from
the design.

The Human Problem Solving Process

The Systems Design Process

Given: Formal Requirements Definition
.-

1. Structure the primary functions reflecting the user's re-
quirements.

2. Allocate these functions to the hardware, software,
firmware, and human elements. Iterate to step 1.

3. Iterate the design to include any secondary functions.
Iterate to steps 1 and 2. Re: A System Design Specifica
tion is built from 1, 2 & 3.

4. Validate the overall system design against the require
ments. Iterate to Formal Requirements Definition. [16],
[75], [60]

Environmental Factors
in Support of New Methodologies

1. Philosophy of logic.

2. Psychological sciences.

3. Management science.

4. Communication skills.

5. Tool set management and development.
a. Qparser sys for parser generators and translation

theory education.

b. C++ , an object oriented language approach to C.

c. Ada as a programming language.

d. Ada as a mind set and methodology for software
engineering education.

e. Execution Pascal as an interactive entry level com
puter engineering education primer.

f. Franz-Lisp and object oriented AI built with Ada.
[4], [102], [49], [48]

337

www.manaraa.com

338 Anomalies and Prospectus

Questions that Motivate the Need for
New Education Methods

Why can't big problems be understood from a pure refinement and non
interdependent model?

Why doesn't big problem solution's interdependency necessarily require
new design or reinvention of the wheel? Might this require a special

analysis of the old design or algorithm?

Can the methodology be translatable, compilable, optimizable, and
representable in the mathematics of design?

What must students know to understand the problems of today and the
future?

Some suppositions on this knowledge base:

• Must have a mind set based in formal logical reasoning.

• Must have deductive, premise, and formal calculus power.

• Must have at least an intuitive understanding of graph
theory, set theory, and formal relationships.

• Must have significant expressive power personally (i.e.,
knowledge of formal languages, and how to express top
down, functional, and object-oriented ideas).

• Must be attuned to abstract algebras to the extent to apply
formal logic and relationships to abstract symbolic
nomenclature.

• Must have concrete understanding and experience with the
engineering methods of problem solving and systems
design. [4]

Points on Abstractions of
Software Engineering Principles

My conSiderations here primarily are with two classes of programs: (1)
programming locally, and (2) programming-in-the-Iarge. Locally refers
to foreknowledge of eventual use of each module and the details of
each module being well-known to all other portions of the effort. In-the
large refers to programming where the size of the program is not easily

www.manaraa.com

Rowland 339

conceivable by a single person and where a consideration must be
given to enough independency in each module that no foreknowledge or
detail of a module by a potential user is needed in order to have the
module used in a larger scheme. Some factors affecting whether one
programs locally or in-the-Iarge follow:

• Structured programming is a byword today, but what is it
and how does it impact our concern here?

• Structure may be thought of as a program constructed of
relatively independent modules connected via some hierar
chy with one or more of the modules being the controlling
module for the entire hierarchy. Generally there is an im
plicit abstraction of the solution design in the structure.

• Some key terms here are structure, programming parts,
and either closely or loosely coupled connectivity between
parts. [75]

An interesting application of this idea of structure is in program develop
ment management, where the dilemma of work assignment units may
be parallel with module development and the independence of modules
may lead to more control by a small team over what their eventual
product looks like rather than being hogtied by the described use of the
module by someone at a different hierarchy in the design or program
ming management. [75], [5]

Structured design may be looked at in two areas: (1) decomposition of
hierarchy, and (2) specification of connectivity within the hierarchy.
Some of management's greatest concerns are for the suitability and
susceptibility of programs or modules to changes, maintenance, and
reusability. Advanced studies in computer science must center on bet
ter decomposition and better specification. This connectivity question is
a formal one. Is it tied to flow of control or to the assumptions that one
module understands with respect to another module? If, in fact, the

latter, then these abstract assumptions may say little about the detail of
the true purpose of a module. [16] What is the mechanism that can
define the correct abstract set of assumptions? This lies in part or
module specification. For what more should the design be than a state
ment on the general assumptions about the solution set of the problem?

www.manaraa.com

340 Anomalies and Prospectus

Doing more in essence is doing less, i.e., when millions of dollars are
spent by taxpayers for a product, we expect expandability, extensibility,
flexibility, specifiable ness, modifiability, and the ability to recognize er
rors optimally. So when our design is so restricted in the class of
problems it may be applied to, we have been disserviced. The
specification or the set of assumptions that are abstract to the details of
a subsection or module are now described. These open the modules to
generality and maintainability.

SEI-Software Engineering Institute

These comments will hopefully support via examples the bridging of the
gap and the quieting of the crisis.

Important projects completed this year and last using a new mind set in
design point to the validity of the use of object-oriented design and
methodologies in future designs. MITRE Corporation, Martin Marietta,
and Softech have completed significant software projects with some in
teresting results. Of note is that time spent up front on design and
analysis using formal design tools centered on a programming
methodology resulted in up to 25-30 percent reduction in debugging and
testing on the projects. Not only was this surprising, but the additions
up front were of the order of 10 percent, which pointed to less effort
resulting in better output in shorter time. The software lifecycle can be
modified. [102], [104], [52], [20]

Life-Cycle Representation:

Analysis--

Requirements Definition------------------------------

Des ig n ---

Cod i ng --

T esti ng --------------------------------------

In stallation---------------------------

Ope rati 0 n ---------- -------------

Mai nte n ance---------------

www.manaraa.com

Rowland 341

Life-Cycle Impact:

= Analysis--Retraining or 1990's ++

=Requirements--1990's Graduates

=Design--1990's Junior Analysts or Retraining

= Coding--1990's Programmers Reay if Tools
and Standards are in Place

= Testing--1998 and Junior Analysts

= Instaliation--1990's

= Operational--1990 ++ Systems

= Maintenance--Minimal for 1990 Designs

Figure 1. Software Lifecycle Modification

It is not yet possible to say that Iifecycle cost for these projects will be
less, but the cost of putting a system in the field is shown to be less, and
the time to installation is less. This seems to say that for each additional
dollar spent up front, two to three dollars are saved in the testing and
installation phase.

This would point to shortened development periods, and possibly to the
overall life of a system being significantly lengthened prior to obsoles

cence due to cost of maintainability or no longer meeting mission.

Support Information for Developing
Advanced Computer Education

There is another picture of the status of education: 1980 - classes in
third generation languages; 1985 - first classes in fourth generation
languages and introduction to modern methodologies. Use of second
generation object-oriented and artificial intelligence based languages.

www.manaraa.com

342 Anomalies and Prospectus

Wide usage of modern tools such as interactive editing, window
managers, breakpoint and interactive tracing compilation tools. Intro
duction to the use of total environment concept of programming. Use of
PDL's that can be compiled and executed to even show flaws in
abstract idea relationships. Government, industry, and academic inter
est in better, cheaper software. Organizational support of solving the
problem-solving-inadequacy that exists in the product coming from our
educational institutions, whether undergraduate, graduate, high school,
or trade schools. Example organizations: AJPO through ACEET;
STARS; Software Engineering Institute; and the ACM and IEEE.

DoD may take a look at its DODCI for a control group for education
impact and parallel results with contractor groups. These groups have
enough control and accessibility that a metric of the social and
psychological impact of education and experience may be reliably
formed. This may give a forecast for the future of affordable, reliable,
maintainable design methodology. [90], [26] By the 1990's, the next
generation of courses must be in place. The graduates today must
receive retraining priority and must be motivated to utilize modern
methodologies in design and development.

By the 21 st Century, the managers and leaders and those conceiving
new systems must be products of modern methodology training and
mindset. Life cycle models must receive modern training and interest at

all phases.

What are the Proposed Courses in Support of Advanced
Computer Science Education?

At the core of advanced computer and problem solving methodology is
a combination of in-depth courses embodying the ideas of formal logiC
theory, computer-aided interactive graphics and window management,
non-functional artificial intelligence rooted in objects and knowledge
base, and modern language and environment tools centered around the

Ada mindset. [90], [75], [4], [5]

• Real Time Processing Concerns with Ada, et at.

• Software Engineering Standards Application

www.manaraa.com

Rowland

• Window Management Design & Analysis

• Graph Theory Applications in Program Design Analysis

• Abstractions of Problem Space Objects

• Proving Correctness of Object & Operation Abstractions

• Exploiting Concurrency in Translation Design Concerns

• Total Computing Environment Design

• Syntax-Directed Context Sensitive Editor for Abstract Lan
guages

• Interface Design with Artificial Intelligence and Class and
Object-oriented Decision Analysis

• Algorithmic analysis with emphasis on building reusability
criteria

• APSE and MAPSE design concepts

• Advanced Technical Programmer Re-education

• Advanced Technical Manager Re-education

• Collecting Knowledge-Base Objects from Nature & the
Universe

• Psychology in Changing the Mindset of Problem Solution
Designers

• The Dynamics of Using Pictorial Information Transfer in
Education and Design (over 80% of learning occurs from
visual stimuli).

343

www.manaraa.com

Education for the Future of Software Engineering

Mary Shaw
Software Engineering Institute

Abstract. The discipline of software engineering is developing rapidly.
Its practitioners must deal with an evolving collection of problems and
with new technologies for dealing with those problems. Software
engineering education must anticipate new problems and tech
nologies, providing education in the enduring principles of the field in
the context of the best current practice. Since changes in the dis
cipline cannot be completely anticipated, software engineers must be
able to assume responsibility for their own continuing professional
development. This paper describes significant changes now taking
place in the field of software engineering and proposes some goals
and objectives for the professional education of software engineers.

Software engineering is concerned with finding practical solutions to
computational problems. Over the next few years, software engineering
will be required

• to respond to society's broadening needs and higher ex
pectations for software

• to deal with constantly increasing expectations for software
functionality and performance

• to gain intellectual control over software development and
support.

The major challenges that arise from these requirements will be to
broaden software engineering's traditional scope of attention and to in
crease the scale of systems that can be successfully developed and
supported. This will require significant changes in the character of the
problems that we work on and the methods that we use to solve these
problems.

The demand for software is rising more rapidly than our ability to supply
the desired capability. For example, Figure 1 uses code size to es
timate software demand. The growth rate for this particular application,
onboard software in manned spacecraft, is nearly 30% annually. The
figure compares this demand growth with the growth of programmer
productivity, which is only about 5% annually. We clearly need to find

www.manaraa.com

Shaw 345

ways to increase not only the productivity of software engineers but also
the rate at which their productivity grows. This problem is one of several
software engineering problems aggravated by increasing system com
plexity. Software engineering education will play a significant role in
solving these problems.

Code Size y
10.0MBits ~~~~~~~~~~~~~~~

Code ~
S~ /

./
1.0MBits ~~~~~~~_i~~~~~~~ ~ _ _ _ Annual Productivity-

..........-.
0.1 MBits -I--_+_-__ f----t---.---+------t

1960 1965 1970 1975 1980 1985 1990
Year

Figure 1. Relative Growth of Software Demand and Productivity

The argument of this paper is as follows. As system complexity in
creases, the essential character of the most critical problems of software
engineering also changes. In order to cope with the complexity of large
systems and the new kinds of problems that emerge, software engineer
ing must move from an ad hoc basis to a technology-intensive basis
rooted in sound models and theories. The principles we use and teach
must transcend current practice; they must be codified and teachable.
In some cases, such principles can be identified; in other cases we have
some systematic understanding that is incompletely codified; in other
cases we make do with rules of thumb while trying to develop sound
models and theories. Software engineering education must prepare
practitioners for future growth by teaching them principles based on
sound models in the context of the best current practice.

www.manaraa.com

346 Education for the Future of SE

Effects of Scale on Software Engineering

Software engineering has progressed from solving small problems to
solving quite large ones. At each stage in this history, the attention of
the software engineering community has been directed at some set of
issues that can be understood as characteristic of the major problems of
software development at that particular time. Each new generation of
systems has been more ambitious than the previous, and new problems
emerge as a consequence of this increase in scale. A significant in
crease in system scale and a corresponding shift in the character of the
critical problems seem to take place roughly every decade.

Each time there is a quantum increase in the complexity of software
systems, some different aspect of system development becomes the
intellectual bottleneck. In the 1960's the problem was writing under
standable programs, or programming-in-the-small, and the solution was
implemented through high-level languages. In the 1970's the problem
was organizing large software system development, and the solution
was implemented through tools for programming-in-the-Iarge. The sig
nificance of the distinction between programming-in-the-small and
programming-in-the-Iarge is that it is necessary to think about these two
kinds of problems in essentially different ways; when the distinction was
established, the attention of a significant fraction of the software en
gineering community was directed to that new problem. When a shift of
bottleneck takes place, the problems encountered with smaller systems
remain, but the new bottleneck forces the field to attend to a new set of
problems in a fashion that may be essentially different from the way we
thought about previous problems. The earlier, smaller problems don't
disappear, however; they usually remain as subproblems in the larger
systems.

In the decade since software engineering recognized programming-in

the-large as a significant issue, the complexity of software systems has
grown by another leap, and another shift is now taking place. Software
engineers must now deal with complex systems in which software is one
of many components in a large heterogeneous system and in which the
software is expected to serve as a surrogate for a human programmer,
taking an active role in the development and control of software sys-

www.manaraa.com

Shaw 347

tems. We will describe those new modes of operation as
program-as-component and program-as-deputy, respectively. This
analysis is elaborated in "Beyond Programming in the Large: The Next
Challenge for Software Engineering," Tech Memo SEI-86-TM-6, May
1986. [86]

Identification of these new modes recognizes a change in the character
of the problems that depend on computational solutions as well as a
change in the character of the software development and support
process:

• They are not necessarily amenable to algorithmic solution.

• They involve judgmental elements such as selecting among
competing, non-absolute preferences.

• They depend on problem-specific knowledge that must be
consulted dynamically.

• They are so complex that solutions cannot be specified a
priori but must be evolved through experience.

• They involve integration of a heterogeneous set of system
components including hardware as well as software. They
require graceful accommodation of unreliable data and
other vagaries of physical systems.

The role of program-as-component arises in large heterogeneous sys
tems. Such systems include programs in multiple languages for com
plex hardware systems; they may have mechanical constraints, produce
noisy data, or impose real-time constraints on operation.

The role of program-as-deputy arises when large, creative portions of
the program development process are delegated to software. This shift
has been taking place gradually ever since the first symbolic assembler
assigned addresses to variables. As time has passed, more and more
expertise about various aspects of the software development process
has been incorporated in programs which perform increasingly creative
subtasks within the software development and management process.

These shifts reflect only the changes in the technology of software
development and support. As system scale has increased, issues from
several other areas have also become critical.

www.manaraa.com

348 Education for the Future of SE

• Professional Issues: Software engineering will experience
a significant personnel shortfall for at least the next 5-10
years. Attention to education, career paths, and profes
sionalism will help to take up the slack.

• Legal Issues: Software is unlike either hard products or
books. As a result, neither patent law nor copyright law is
quite appropriate for software products and tools. Intellec
tual property law for software must deal with such issues as
software protection, product liability, impediments to dis
semination of new technology, and rights in technical data.

• Economic Issues: Costs of software development arise
from many sources, and software consumes an increasing
fraction of corporate resources. In addition, accounting
rules for software influence corporate decisions about in
novation. Software engineers often fail to appreciate cost
components other than the ones directly associated with
creating the software.

• Managerial Issues: Management concerns have interacted
with software technology ever since we recognized the
issues of programming-in-the-Iarge. As systems grow
larger, managerial issues expand to include improved cost
ing and estimating techniques, the visibility into software
development necessary for effective control, adequate per
formance measures for human organizations, and incen
tives and risk reduction measures to encourage more
productive software technology.

Although these areas have not generally been covered in software en
gineering education, their role now requires attention.

The significance of these shifts is not so much the specific develop
ments I have predicted, but the inevitability of some form of change.
Progress in software engineering is a fact of life. Systems and tools will
change continually, but more significantly the underlying paradigms will
also change as increases in problem scale introduce new bottlenecks
requiring essentially new techniques for resolution. As a result, our sys

tems must include plans for change and accommodations for local in
consistency as changes take place. Software engineers must be edu
cated to anticipate and accommodate regular change.

www.manaraa.com

Shaw 349

"Engineering" in Software Engineering

Engineering is the application of scientific and technical knowledge to
the creation of effective systems that meet practical goals. Engineering
disciplines have elements of both synthesis and analysis. In software
engineering, synthesis includes design, programming, and integration;

analysis includes requirement definition, evaluation, and measurement.
Good engineering relies on a combination of underlying scientific prin
ciples, technical know-how and experience, and a pragmatic concern
with effectiveness and utility. Although the field is gradually maturing,
the description "software engineering" is still more an aspiration than an
accomplishment.

Traditional methods of software development are ad hoc and labor
intensive. They will not be adequate to satisfy the increased demands
on computing systems and the complexity of the resulting systems.
Software engineering must move to a technology-intensive basis that
draws on scientifically-based models and theories; it must be prepared

to take advantage of advances in these areas as they become available.
The education of software engineers is critical to this progress, for good

ideas achieve practical utility only in the hands of people who use them
wisely.

Over the past two decades a shift to methods based on scientific
models has taken place in many aspects of programming-in-the-small.
Algorithms and data structures were originally created in an ad hoc
fashion, but regular use revealed patterns that could be organized sys
tematically and in time provide a basis for formal theories. Some of the
earliest formal models supported the analysis of algorithms. Our under
standing of algorithms for certain problem domains is now quite well
structured, we can analyze the performance of specific algorithms, and
we know theoretical limits on performance in many cases. Similarly, a
theory to support abstract data types emerged during the 1970's. In the
late 1960's computer scientists recognized the importance of good
representations and their associated data structures. Refining this in
sight to a theory of abstract data types took about a decade; it required
advances in formal speCification, programming languages, verification,
and programming methodology. Undergraduate computer science stu-

www.manaraa.com

350 Education for the Future of SE

dents should now routinely master algorithmic analysis and abstract
data types; it is now reasonable (but not entirely realistic) to expect the
material to be applied in routine practice.

Sound theories can also contribute significantly to our ability to construct
software systems. For example, the compiler for a programming lan
guage is a medium-sized system with a structure that is now well under
stood. Whereas in the early 1960's the construction of a compiler was a
significant achievement, compilers are now often constructed routinely.
Good theoretical understanding of syntax developed in the 1960's led to
effective techniques for constructing parsers in the 1970's, first manually
and more recently automatically. Similarly, good theories for program
ming language semantics and type structures developed in the 1970's
are now leading to automation of other stages of compiler construction.

Although programming-in-the-Iarge has a somewhat shorter history, for
mal models are beginning to emerge for the information management
problems in that domain. For example, configuration management and
version control began on an ad hoc basis with simple tools for organized
(and often massive) recompilation, but at least a few models of system
configuration and remanufacture are guiding the construction of
software tools. The theoretical basis not only shows how to manage
dependency information to reconstruct a system correctly, it also sup
ports more efficient strategies of system reconstruction by avoiding un
necessary steps (e.g., recompilation of modules in which the only
changes were comments or which depend only on unchanged portions
of modules that were changed).

These examples give the flavor of the progress toward sound foun
dations for software engineering. There are clearly many areas in which
the models, theories, and methodologies are still primitive. However,
the power of soundly based theories in at least a few areas offers en
couragement for developing and refining theories in other areas.

In Search of Software Engineering Principles

A scientist or engineer instinctively attempts to formalize principles in
the form of mathematical laws, and it would be convenient if software

www.manaraa.com

Shaw 351

engineering could similarly be derived from a set of primitive equations.
However, software engineering includes substantial social and organiza

tional components - both behavioral and aesthetic - and it studies
artificial constructs not constrained by the physical laws of materials. As
a consequence, the models and theories of the field take many forms.
We find good use for

• formal (mathematical) and informal theories

• structural and empirical models

• quantitative and qualitative evaluations

• synthetic and analytic principles

• algorithms and paradigms for design and human behavior

• strong and weak methods

• deep and shallow systems.

In general, the foundations of the field - the principles, models, and
theories - should be systematic, codified, and abstracted from the ex

amples where we learned them. These foundations should transcend
changes of orders of magnitude in current technology, current problems,
or current practice. It should be reasonably easy to teach these foun

dations to others.

At the current stage of software engineering's development, principles,
models and theories are not yet available for all aspects of the dis
cipline. Pragmatics lead us to develop and maintain software through a
combination of principles and ad hoc techniques:

• principles that transcend current practice and current tech
nology

• rules of thumb that guide current practice by codifying use
ful patterns

• methodologies that mechanize elements of current practice
but do not generalize

• hacks

Good practice calls for drawing on techniques that lie as high on this list
as possible.

www.manaraa.com

352 Education for the Future of SE

Precise or detailed description of a technique does not make it a prin
ciple. For example, the waterfall model for software development
(Figure 2) is a methodology, or mechanization of current practice, and
not a principle.

System Requirements Engineering

t..:.:..:~~)." Resource Allocation

Software Requirements Engineering

Lo.::;o.~~~ Preliminary Design

Detailed Design

""-";:;:;;;:;...:;:)., Program (Module) Development

Operation/Maintenance
c;.;:;....::;....:.-I

Figure 2. A Non-principle

Software engineering education should accommodate the current state
of the field by presenting the strongest principles available in the context
of the best current practice. Respect for the students and the state of
the field require the material to be presented with honest assessments
of the strengths and weaknesses of the techniques. In order for the
material to be useful when current practice is obsolete, the selection of
material in a software engineering curriculum should favor those areas
in which principles have developed; a good curriculum should refrain
from simply teaching current practice in the absence of unifying prin
ciples.

The position papers for the SEI Education Workshop contained many
exhortations about the need for principles, but few concrete examples.
Discussions during the workshop brought out some more examples. I
will survey some of the suggestions for the guiding ideas that are
variously called principles, theories, models, rules, paradigms, laws and
methods.

First, most of software engineering seems to share a few attributes.
These are often implicit in attitudes and in selection of techniques rather
than subjects of explicit discussion. These underlying principles show
that software engineering is:

www.manaraa.com

Shaw

• Reductionistic: We believe that problems in software en
gineering can be decomposed into successively smaller
subproblems and that the solutions to the subproblems can
be recombined to obtain a solution to the larger problem.
We believe that this accounts for the phenomena that we
deal with and that no "vital spark" is required or lost in
decomposition. We also generally believe in reproducibility
of effect - that the same initial conditions and inputs al
ways yield the same result - though this tends to break
down in systems so large that the initial condition cannot be
precisely specified.

• Discrete: The problems and artifacts of software engineer
ing are discrete, rather than continuous. We don't deal with
infinitesimals or limits. Although we sometimes model
those effects, we do so with definite limits on accuracy. As
a consequence, our reasoning relies on case analysis, in
duction, and abstraction rather than, for example, ex
trapolation and interpolation.

• Non-universal: We believe in the existence of knowledge
extrinsic to software engineering. We do not believe that
software engineering or computer science is a universal
discipline in the sense that it must eventually account for all
phenomena in the world. As a result we must deal with
transition problems at the boundary of the field; these are
often also the boundaries between discrete and continuous
phenomena.

• Incompletely quantifiable: Although we try to treat software
engineering as an engineering discipline and we use quan
titative models and measures wherever possible, we recog
nize that aesthetic considerations must also be respected.
This is particularly true of the design aspects of the field.

• Computationally limited: Software engineering is incom
pletely quantifiable not only because of aesthetic require
ments but also because of fundamental incompleteness of
the underlying mathematics. We have not only theorems
about undecidability but also demonstrations of the intrinsic
completeness of testing strategies.

353

Some approaches to problems appear consistently throughout software
engineering but appear to be techniques that generally work rather than
underlying principles that dictate what solutions must be. These articles

of philosophy include:

www.manaraa.com

354 Education for the Future of SE

• Engineering discipline: As noted above, calling the field
"software engineering" is still more an aspiration than an
achievement. Nevertheless, we find that it is worth while to
apply soundly-based models and techniques wherever we
can.

• Abstraction: Abstraction is suppression of detail. Good
abstraction is suppression of detail that is, to the current
audience, not significant. We use abstraction not only as
an approach to managing the complexity of the systems
that we develop but also as an approach to designing the
interfaces to those systems. We believe that a computer
system should allow its user to focus on the user's real
problems rather than on the operation of the system.

• Defect prevention: We generally follow a strategy of defect
prevention rather than of defect removal. This is an ap
proach rooted in utility rather than in principle: it is most
often less expensive and less nuisance to build systems
correctly in the first place rather than debug them after the
fact. However, this may not always be true; for example,
the use of rule-based systems to develop prototypes by
iteratively adding information about a complex application
and testing the prototype seems to be appropriate in many
cases.

• Reusability: Because of the creative effort involved, we
believe that it is better to reuse system components than to
build them from scratch. This is sometimes called the "buy
don't-build" philosophy. In fact, this is an observation about
economics and utility rather than a universal truth.
However, when we start designing with reuse in mind, we
will in effect be constructing theories that explain small ap
plication domains; the theories will be expressed in
whatever form the reusable code takes.

Some areas of software engineering rely extensively on formal theories.
These tend to be the older areas in which our understanding of the
material has had longer to evolve. Some of these well developed
theories include formal syntax and semantics, various kinds of logiCS,
the theory of computation, formal specification and verification, the
theory of algorithms, and type theory. Programming languages are of
ten based on these theories, and we now recognize a number of pro
gramming paradigms. The more traditional paradigms such as applica
tive or functional programming and imperative programming are being

www.manaraa.com

Shaw 355

joined by object-oriented programming, message-based systems, con
straint systems, and rule-based systems.

In other areas, only certain problems have been treated systematically
for long enough to develop good models. These models are sometimes
structural, as are the queuing-theoretic models for performance evalua
tion. In other cases the models are empirical, as are certain disk
scheduling algorithms and cost estimation models. In the long run the
structural models will best meet the test of surviving order-of-magnitude
changes in technology or practice, but empirical models are welcome
aids in the meanwhile.

Unfortunately, there are many areas of software engineering in which
sound models or theories have not yet evolved. In these cases the best
practice is ad hoc. We should be cautious about the role these prac
tices play in software engineering education. On the one hand, they
represent the best of current practice; on the other, they cannot be ex
pected to be durable. Reasonable compromises may involve teaching
the nature of the problems without dwelling on the details of the ad hoc
solutions.

Goals and Objectives for Software Engineering Education

Software engineering is a part of computer science that draws heavily
on mathematics, engineering, management, economics, communica
tion, law, cognitive psychology, and design. It inherits a dilemma from
computer science: changes in problems, technologies, and methods
are an intrinsic part of the field, so the student and teacher are always
aiming at a moving target. Since we are constantly assimilating new

technologies, we are always on the leading edge of the learning curve
for the current technology. This makes it critical for practicing engineers
to deal comfortably with change.

Software engineers are educated in colleges and universities, in con
tinuing education programs, and in in-house programs of individual com
panies. Although these programs reach rather different audiences, they
address the same body of knowledge. As a result, a unified curriculum
design may suffice to set agendas, but different organizations and
presentation styles may be required for different audiences.

www.manaraa.com

356 Education for the Future of SE

Whether software engineers learn this material at the beginning of their
careers or afterward, they must be able to function immediately as
professionals and to grow as the discipline evolves. Since software
engineering is becoming a scientifically-based discipline, students must
be educated in the fundamental principles not only of computer science
but also of the other fields that contribute heavily to software engineer

ing.

Following the Carnegie Plan for education [27, 78], we can state objec
tives for any software engineering curriculum, whether it be offered in
academia or industry, whether it be a degree program or continuing
education. We need a curriculum through which a student can acquire:

• A thorough and integrated understanding of the fundamen
tal conceptual material of software engineering and the
ability to apply this knowledge to the formulation and solu
tion of real problems in software engineering.

• A genuine competence in the orderly ways of thinking
which scientists and engineers have always used in reach
ing sound, creative conclusions; with this competence, the
student will be able to make decisions in higher profes
sional work and as a citizen.

• An ability to learn independently with scholarly orderliness,
so that after graduation the student will be able to grow in
wisdom and keep abreast of the changing knowledge and
problems of his or her profession and the society in which
he or she lives.

• A philosophical outlook, breadth of knowledge, and sense
of values which will increase the student's understanding
and enjoyment of life and enable each student to recognize
and deal effectively with the human, economic, and social
aspects of his or her professional problems.

• An ability to communicate ideas to others.

The focus of the curriculum should be on a liberal professional educa

tion with emphasis on design and problem-solving skills. Describing the
education as "liberal" recognizes the importance of exposure to topics
outside the student's specialty; at the graduate level this may be some
what more narrowly directed at material related to software engineering
than at the undergraduate level. Liberal education includes communica-

www.manaraa.com

Shaw 357

tion skills, both for understanding the work of others and for com
municating one's own work. Describing the education as "professional"
recognizes the legitimate motivations of students who value education
because they can apply it rather than for pure intellectual enjoyment.
The "design" component of the education recognizes the synthetic,
creative aspect of the profession. "Problem-solving skills" refers to the
ability to apply general concepts and methods from a variety of dis
ciplines to all kinds of problems, abstract as well as practical, whose
solutions require thought, insight, and creativity. Thus "problems" can
range from the proof of a theorem to the design and construction of a

specialized computer program and "skills" refers to creative intellectual
ability, not merely the ability to perform repetitive routine actions.

A Word of Caution

The greatest danger to software engineering curriculum designers is
lack of imagination. If we are too narrow, too shortsighted, or too low in
our aspirations, we will deprive the field of the skills it needs to satisfy
society's requirements for broader scope and larger scale in computer
based systems.

Acknowledgements

My understanding of software engineering education and the principles
that support software engineering has come from many discussions with

other computer scientists, especially my colleagues at Carnegie-Mellon.
Particular insights in this paper came from discussions with Bill Wulf,
Allen Newell, Nico Habermann, and Jim Horning. Jim Tomayko sup
plied data for the software demand figure. The discussion of software
engineering principles evolved substantially during two long sessions
with the Principles Working Group at the SEI Education Workshop.

www.manaraa.com

Section II
Part 5

Bibliography

www.manaraa.com

Bibliography 359

[1] Aho, AV., Kernighan, B.W. and Weinberger, P.J. Awk - A Pat
tern Scanning and Processing Language: Programmer's
Manual. Computing Science Technological Report 118, AT&T
Bell Laboratories, June 1985. 36 pp.

[2] Ardis, M., Bouhana, J., Fairley, R., Gerhart, S., Martin, N. and
McKeeman, W. Core Course Documentation, Master's Degree
Program in Software Engineering. Technical Report TR-85-17,
Wang Institute of Graduate Studies, 1985.

[3] Baker, F.T. Chief Programmer Team. IBM Systems Journal,
IBM,1972.

[4] Balkovich, E., Lerman, S. and Parmelee, R.P. "Computing in
Higher Education: The Athena Experience." ACMIIEEE-CS Joint
Special Issue, Volume 18, Number 11, November 1985.

[5] Balzer, R. "The Role of Logic and AI in the Software Enterprise."
IEEE Software Engineering, pp. 394,1985.

[6] Barbacci, M., Habermann, AN. and Shaw M. "The Software En
gineering Institute: Bridging Practice and PotentiaL" IEEE
Software, Volume 2, Number 6, November 1985.

[7] Basili, Turner. "Iterative Enhancement." IEEE Transactions on
Software Engineering, Volume 1, Number 4, pp. 390-396,
December 1975.

[8] Beizer, B. Software System Test and Quality Assurance. Van
Nostrand Reinhold Co., 1984.

[9] Ben-David, A, Ben-Porath, M., Loeb, J. and Rich, M. "An In
dustrial Software Engineering Retraining Course: Development
Considerations and Lessons Learned." IEEE Transactions on
Software Engineering, Volume SE-10, Number 1, pp. 748-755,
November 1984.

[10] Bentley, J.L. Programming Pearls. Addison-Wesley, 1986.

[11] Boehm, B. Software Engineering. Technical Report TRW
SS-76-08, TRW Systems, October 1976.

[12] Boehm, B. Software Engineering Economics. Prentice-Hall, Inc.,
1981.

[13] Boehm, B. "Software Technology in the 1990's: USing an Evolu
tionary Paradigm." IEEE Computer, Volume 16, Number 11, pp.
30-37, November 1983.

www.manaraa.com

[14] Boehm. B. "Prototyping vs. Specifying: A Multi-project
Experiment." Proceedings of the 7th International Conference on
Software Engineering. pp. 473-484. IEEE. March 1984.

[15] Boehm. B.W. Notes on Requirement Analysis and Design.
Data Processing Management Association Seminar.

[16] Booch. Grady. Software Engineering with Ada.
Benjamin/Cummings Pub. Co .• 1983.

[17] Bristol Polytech. System Analysis Course. Bristol Polytech
School Catalog.

[18] Brooks. F. The Mythical Man-Month. Addison-Wesley. 1975.

[19] Brooks. R E. "Using a Behavioral Theory of Program Com
prehension in Software Engineering." Proceedings of the 3rd In
ternational Conference on Software Engieering. pp. 196-201.
IEEE Computer Society. May 1978.

[20] Brooks. RE. "Studying Programmer Behavior Experimentally:
the Problems of Proper Methodology." Communications of the
ACM, Volume 23. pp. 207-213. April 1980.

[21] Busenberg. S.N. and Tam. W.C. "An Academic Program Provid
ing Realistic Training in Software Engineering." Communications
of the ACM, Volume 22. Number 6. June 1979. Harvey Mudd
College.

[22] Cain. J.T., Langdon, G.G., Varanasi, M.R Model Program in
Computer Science and Engineering. Technical Report 4, IEEE
Computer Society, April 1983.

[23] Cameron, J.R JSP & JSD: The Jackson Approach to Software
Development. 1983.

[24] Denning P.J. "A Discipline in Crisis." Communications of the
ACM, Volume 24, Number 6, pp. 370-374, June 1981.

[25] DeRemer, Frand and Kron, Hans H. "Programming-in-the-Large
versus Programming-in-the-Small." IEEE Transactions on
Software Engineering, Volume 2, Number 2, pp. 80-86, June
1976.

[26] SE of Computer. The 000 STARS Program. Vol. 16, #11.

[27] Doherty, Robert E. The Development of Professional Education.
Carnegie Press, Carnegie-Mellon University. 1950.

www.manaraa.com

Bibliography 361

[28] Fairley, R. "Toward Model Curricula in Software Engineering."
SIGCSE Bulletin, Volume 10, Number 3, pp. 77-79, August
1978.

[29] Fairley, Richard. Software Engineering Concepts. McGraw-Hili,
Inc., 1985.

[30] Fairley, R.E. The Role of Academe in Software Engineering
Education. Technical Report TR-85-19, Wang Institute of
Graduate Studies, October 1985.

[31] Feldman, S.1. "Make - A Program for Maintaining Computer
Programs." Software - Practice & Experience, Volume 9, Num
ber 3, March 1975.

[32] Feldman, J.A. and Sutherlin, W.R. "Rejuvenating Experimental
Computer Science." Communications of the ACM, Volume 22,
Number 9, pp. 497-502, September 1979.

[33] Finniston, Montague Sir. Engineering, Our Future. Report of
the Committee of Enquiry into the Engineering Profession Com
mand Paper 7794, HMSO, 1980.

[34] Fjeldstad, R.K. and Hamlen, W.T. Application Program Main
tenance Study: Report to our Respondents. Technical Report,
Proceedings of Guide 48, 1979.

[35] Freedman, D.P. and Weinberg, G.M. Handbook of Walkthrough,
Inspections, and Technical Reviews. Little-Brown, 1982.

[36] Freeman, Peter and Newell, Allen. "A Model for Functional
Reasoning in Design." Proceedings of the 2nd International Joint
Conference on Artificial Intelligence, pp. 621-633. 1971.

[37] Freeman, Peter. "Training Software Designers: Lessons from a
Development Project." Proceedings of the International Con
ference on National Planning for Informatics, pp. 232-243. North
Holland, 1975.

[38] Freeman, Peter. "Realism, Style, and Design: Packing It Into a
Constrained Course." Proceedings of the ACM Symposium on
Computer Science Education, pp. 150-157. SIGCSE Bulletin
8,1, ACM, 1976.

[39] Freeman, Peter. "The Central Role of Design in Software
Engineering." Freeman, Peter and Wasserman, Anthony
I. (editors), Interface Workshop on Software Engineering
Education, pp. 116-119. Springer-Verlag, Irvine, CA. July 1976.

www.manaraa.com

362 Bibliography

[40] Freeman, Peter, Wasserman, AI. and Fairley, Richard
E. "Essential Elements of Software Engineering Education."
Proceedings of the 2nd International Conference on Software
Engineering, pp. 116-122. 1976.

[41] Freeman, Peter and Wasserman, AI. "A Proposed Curriculum
for Software Engineering Education." Proceedings of the 3rd In
ternational Conference on Software Engineering, pp. 52-62.
1978.

[42] Freeman, Peter. "The Central Role of Design in Software
Engineering." Software Engineering: Research Directions.
Academic Press, 1980, pages 121-132.

[43] Freeman, H. and Lewis, P. (editors). The Central Role of DeSign
in Software Engineering: Implications for Research. Academic
Press, 1980.

[44] Freeman, Peter. "Fundamentals of Design." Software DeSign
Techniques. IEEE Press, 1983, pages 2-22.

[45] Gardner, Howard. The Mind's New Science: A History of the
Cognitive Revolution. Basic Books, 1985.

[46] Garlan, D.B. and Miller, P.L. "GNOME: An Introductory Program
ming Environment Based on a Family of Structure Editors."
Proceedings ACM, S/GSOFTIS/GPLAN Software Engineering
Symposium on Practical Software Development Enviroments.
ACM, April 1984.

[47] Gill, T.A. A Workable Approach to Software Engineering
Documentation. Technical Report TR-85-22, Wang Institute of
Graduate Studies, December 1985.

[48] Goldberg, A and Robsen, A SMALLTALK-80: The Language
and its Implementation. Addison-Wesley, 1983.

[49] Guttag, J. "Abstract Data Types and the Development of Data
Structures." CACM, Volume 20, Number 6, pp. 369-404,1977.

[50] Hester, S.D., Parnas, D.L. and Utter, D.F. "Using Documentation
as a Software Design Medium." Bell System Technical Journal,
Volume 60, Number 8, pp. 1941-1977, October 1981.

[51] Hoffman, A "Survey of Software Engineering Courses." S/GCSE
Bulletin, Volume 10, Number 3, pp. 80-83, August 1978.

[52] Hopper, G.M., Admiral, USNR. "David and Goliath." DODCI
Selected Computer Articles, 1983.

www.manaraa.com

Bibliography 363

[53] Horning, J.J. and Wortman, D.B. "Software Hut: A Computer
Program Engineering Project in the Form of a Game." IEEE
Transactions on Software Engineering, Volume SE-3, Number
4, pp. 325-330, July 1977.

[54] Subcommittee on Software Engineering. Draft Report on
MSE-80: A Graduate Program In Software Engineering. Tech
nical Report, IEEE Computer Society Education Committee, May
1980.

[55] Jackson, M. System Development. Prentice-Hall, 1983.

[56] Jensen, R., Tonies, C. and Fletcher, W. "A Proposed 4-Year
Software Engineering Curriculum." SIGCSE Bulletin, Volume
10, Number 3, pp. 84-92, August 1978.

[57] Jensen, R. and Tonies, C. Software Engineering. Prentice-Hall,
Inc., 1979.

[58] Kant, E. "A Semester Course in Software Engineering." ACM
SIGSOFT Software Engineering Notes, Volume 6, Number 4,
August 1981.

[59] Kernighan, B.W. and Plauger, P.J. Software Tools in Pascal.
Addison-Wesley, 1981.

[60] Knuth, D.E. "The Art of Computer Programming." Fundamental
Algorithms, Volume 1. Addison-Wesley, 1973, pages 1-24. 2nd
Edition.

[61] Koffman, E.B., Stemple, D. and Wardle, C.E. "Recommended
Curriculum for CS2, 1984: A Report of the ACM Curriculum Task
Force for CS2." Communications of the ACM, Volume 28, Num
ber 8, August 1985.

[62] Leblang, D.B. and Chase, R.P., Jr. "Computer-Aided Software
Engineering in a Distributed Workstation Environment."
Proceedings ACM, SIGSOFTISIGPLAN Software Engineering
Symposium on Practical Software Development Environments.
ACM,1984.

[63] Lee, K.Y. "Status of Graduate Software Engineering Education."
Proceedings of the 1981 Annual Conference. ACM, Los An
geles, California. 1981.

[64] Lee, K.Y. and Frankel, E.C. "Real-Life Software Projects as
Software Engineering Laboratory Exercises." ACM SIGSOFT
Software Engineering Notes, Volume 8, Number 3, July 1983.
Seattle University.

www.manaraa.com

364

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Bibliography

Linderman, J.P. "Theory and Practice in the Construction of a
Working Sort Routine." AT& T Laboratories Technical Journal,
Volume 63, Number 8, pp. 1827-1843, 1984. part 2.

Liskov, B. and Zilles, S.N. "Specification Techniques for Data
Abstractions." IEEE Transactions on Software Engineering,
Volume SE-1, Number 1, March 1975.

Martin, N., Ligget, D. and Kirby, J. The Wang Institute Software
Environment. Technical Report TR-85-05, Wang Institute of
Graduate Studies, 1985.

McGill, J. "The Software Engineering Shortage: A Third Choice."
IEEE Transactions on Software Engineering, Volume SE-10,
Number 1, pp. 42-49, January 1984.

Mcilroy, M.D. "Development of a Spelling List." IEEE Trans
actions on Communications, Volume COM-30, Number 1, pp.
91-99, January 1982.

Myers, W. "An Assessment of the Competitiveness of the United
States Software Industry." IEEE Computer, Volume 18, Number
3, pp. 81-92, March 1985.

NATO Science Committee. Software Engineering. Conference
Report. Garmisch, Germany, October 7-11, 1968 (January,
1969).

Neisser, Ulric. "Chapter 11, A Cognitive Approach to Memory
and Thought." Cognitive Psychology. Meredith Publishing, Co.,
1967, pages 279-305.

Notkin, D.S. "The Gandalf Project." The Jomal of Systems &
Software, Volume 5, Number 2, May 1985.

Osterweil, L.J. "Software Environment Research Directions for
the Next Five Years." IEEE Computer, Volume 14, Number 4,
pp. 35-43,1981.

Parnas, D.L. "On the Criteria to be Used in Decomposing Sys
tems into Modules." Communications of the ACM, Volume 15,
Number 12, pp. 1053-1058, December 1972.

Parnas, D.L. "Some Software Engineering Principles, from A
Technique for Software Module Specification with Examples."
CACM, Volume 15, Number 5, May 1972.

www.manaraa.com

Bibliography 365

[77] Parnas, D.L. and Clements, P.C. "A Rational Design Process:
How and Why to Fake it." Proc. Int. Joint Conf. on Theory and
Practice of Software Development, pp. 80-100. Springer-Verlag,
March 1985.

[78] Paul, F.W., Feucht, D.L., Jr., Teare, B.A., Neuman, D.P. and
Tuma, D. "Analysis, Synthesis, and Evaluation - Adventures in
Professional Engineering Problem Solving." Proceedings Fifth
Annual Frontiers in Education Conference, pp. 244-251, Oc
tober 1975. IEEE and Amer. Soc. for Engr. Ed.

[79] Perlman, G. Shar, A Program In C. Distributed on net.sources,
January, 1985, Citing Gosling version of October 18,1982.

[80] Peters, Lawrence. Software Design: Methods and Techniques.
Yourdon Press, 1981.

[81] Pressman, Roger. Software Engineering: A Practitioners Guide.
McGraw-Hili, Inc., 1982.

[82] Redwine, S.T. and Riddle, W.E. "Software Technology
Maturation." Proceedings 8th International Conference on
Software Engineering, pp. 189-200. ACM, London, England.
August 1985.

[83] Riddle, W.E. and Williams, L.G. Software Environments
Workshop Report. Technical Report TR-85-001, Rocky Moun
tain Institute of Software Engineering, December 1985.

[84] Rochkind, M.J. "The Source Code Control System." IEEE Trans
actions on Software Engineering, Volume SE-1, Number 4,
December 1975.

[85] Shaw, M. (editor). The Carnegie-Mellon Curriculum for Under
graduate Computer Science. Springer-Verlag, 1985.

[86] Shaw, M. Beyond Programming-in-the-Large: The Next Chal
lenges for Software Engineering. Technical Report SEI-86-
TM-6, Software Engineering Institute, Carnegie-Mellon Univer
sity, May 1986.

[87] Sheil, BA "The Psychological Study of Programming." AMC
Computing SUNeys, Volume 13, Number 1, pp. 101-120, March
1981.

[88] Simon, HA Science of the Artificial. MIT Press, 1969.

[89] Simon, Herbert A. The Sciences of the Artificial. MIT Press,
1981.

www.manaraa.com

366 Bibliography

[90] Sommerville, I. Software Engineering. Addison-Wesley Pub. Co.,
1985.

[91] Spicer, J.C. A Spiral Appproach to Software Engineering Project
Management Education. Technical Report, Wang Institute of
Graduate Studies, December 1983.

[92] Stucki, L.G. and Peters, L. "A Software Engineering Graudate
Curriculum." Proceedings of the 1978 Annual ACM Conference,
pp.63-67. ACM,1978.

[93] Teitelbaum, R. and Reps T. "The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment." CACM, Volume
24, Number 9, September 1981.

[94] Teitelman, W. and Masinter, L. "The Interlisp Programming
Environment." Computer, Volume 14, Number 4, April 1981.

[95] Thayer, R.H. and Tozza, J.C. Report on an Investigation to
Determine a Set of Evaluation Criteria for Selecting Project
Management Productivity Tools. Technical Report, National
Bureau of Standards, February 1985. Prepared by Software
Management Consultants.

[96] Tichy, W.F. "Design, Implementation and Evaluation of a Revi
sion Control System." Proc. 6th International Conference on
Software Engineering, pp. 58-67. IEEE Computer Society, Sep
tember 1982.

[97] Tichy, W. "RCS - A System for Version ControL" Software
Practice & Experience, Volume 15, 1985.

[98] Traub, J.F. "Quo Vademus: Computer Science in a Decade."
Communications of the ACM, Volume 24, Number 6, pp.
351-369, June 1981.

[99] U.S. Department of Defense. Reference Manual for the Ada Pro
gramming Language, MIL 1815a. 1983.

[100] Wasserman, A.1. and Freeman, Peter. Software Engineering
Education: Needs and Objectives. Springer-Verlag, 1976.

[101] Wasserman, A.1. and Freeman, Peter. "Software Engineering
Education: Status and Prospects." Proceedings of the IEEE,
Volume 66, Number 8, pp. 886-892, August 1978.

[102] Wegner, P. "Ada Education and Technology Transfer." Ada Let
ters, Volume 2, Number 2,1982.

www.manaraa.com

Bibliography 367

[103] Woffinden, Duard. lecture notes for EENG 593 Software En
gineering,1985. Air Force Institute of Technology, WPAFB, OH.

[104] Wolf, A.L., Clarke, L.A. and Wileden, J.C. "Ada-Based Support
for Programming-in-the-Large." IEEE Software, Volume 2, Num
ber 2, pp. 58-77, March 1985.

[105] Woodfield, S.N., Collofello, J.S. and Collofello, P.M. "Some In
sights and Experiences in Teaching Team Project C.S."
Communications of the ACM, 1983.

[106] Woodward, M.R. and Mander, K.C. "On Software Engineering
Education: Experiences with the Software Hut Game." IEEE
Transactions on Software Engineering, Volume SE-25, Number
1, February 1982.

[107] Worth, L. Personnel conversation with Professor Laurie Worth,
University of Texas at Austin. December.

[108] Zave, P. "Let's Put More Emphasis on Prescriptive Methods."
Software Engineering Notes. ACM,1986.

[109] Zelkowitz, M.V., Yeh, R., Hamlet, G., Gannon, J.D. and Basili,
V.R. The Software Industry: A State of the Art Survey. Tech
nical Report, Department of Computer Science, University of
Maryland,1981.

[110] Zelkowitz, M., Yeh, R., Hamlet, R., Gannon, J. and Vasili,
V. "Software Engineering Practices in the United States and
Japan." IEEE Computer, June 1984.

www.manaraa.com

Section III

Transcripts

www.manaraa.com

Report of the Software Engineering Principles
Working Group

This is the presentation made by A. Nico Habermann, Carnegie
Mellon University, summarizing the discussions of the working group
on software engineering principles. This group was charged with
determining the fundamental principles on which software engineer
ing, and thus a curriculum, can be based.

The participants were: Gordon Bradley, Gary Ford, Susan Gerhardt,
Bill Riddle, Mary Shaw, Ed Smith, and Nico Habermann, group leader.

The group was given the following questions to discuss:

1. What are the fundamental principles of software engineering?

2. How have software engineering principles evolved?

3. How does one distinguish software engineering principles
from computer science principles?

4. What are the non-computer science principles of software
engineering? Do they include coordination, economics, com
munication, and human factors? Are there others?

5. Does software engineering have its own principles, or just a
conglomerate of principles from other disciplines?

6. Is the software engineering profession eclectic or narrow?

7. What is the group's evaluation of the SEts current curriculum
proposal?

Nico Habermann: We will report on our activities of today. We spent
most of our time on two topics: methodology principles and the cur
riculum. Yesterday we discussed the list of questions. We added two
questions, and this morning we addressed those.

The first item was that there may be other things that are standard prac
tices or systematic methodologies that are in use today, that have not

been reduced to principles yet, but that may in the future or now be a
substitute for principles. We discussed in much more detail today the
questions, "Is there any scientific methodology underlying software en
gineering that is more or less unique to software engineering that you
don't find in other disciplines? How does software engineering distin
guish itself, for instance, from mathematics or physics or other
disciplines?"

www.manaraa.com

370 Report of the SE Principles Working Group

SLIDE 1. GENERAL PRINCIPLES

• ANALYSIS OF EXISTING ARTIFACTS OR THEORIES

• COMBINATION OF DESIGN AND ANALYSIS
• DECOMPOSABILITY, REDUCIBILITY
• IMPOSSIBILITY OF ACCURATE REQUIREMENTS SPECIFICA-

TIONS

• ABSTRACTION
• LIMITS OF SCOPE AND SCALE

• DIVIDE AND CONQUER

SLIDE 2. PRINCIPLES OF PHILOSOPHY

• DEFECT PREVENTION VS. DEFECT REMOVAL
• SYSTEMATIC APPROACH VS. APPLICATION OF FORMALISM
• TESTING IS INTRINSICALLY INCOMPLETE

• COST EFFECTIVENESS IS REQUIRED OF ALL SOFTWARE
SYSTEMS

SLIDE 3. CONCRETE PRINCIPLES

• INFORMATION HIDING
• ITERATIVE NATURE OF SYSTEM DESIGN
• REPRODUCIBILITY OF DESIGN IDEAS AND DECISIONS

• OBJECT-ORIENTED PROGRAMMING

• DATA-DRIVEN DESIGN
• RULE-BASED SYSTEMS

• REUSABILITY
• VERIFICATION AND VALIDATION
• DEVELOPMENT UNDER INTELLECTUAL CONTROL

We came to the conclusion that, in addition to the principles that we
discussed yesterday [Slides 1, 2, 3], we do see some principles that are
fairly unique to software engineering, not entirely, but that one can see
as a distinction between software engineering and several other dis
ciplines. We have four of them [Slide 4].

www.manaraa.com

Report of the SE Principles Working Group

SLIDE 4. PRINCIPLES OF METHODOLOGY

• REDUCTION PRINCIPLE
• THE WHOLE = THE SUM OF THE PARTS (AND NOT

MORE)

• DISCRETE NATURE OF THE SUBJECT OF SOFTWARE EN-
GINEERING

• CASE ANALYSIS
• INDUCTION

• ABSTRACTION

• THE EMBEDDED NATURE OF SOFTWARE
• THE IMPACT OF CONTEXT, ENVIRONMENT, AND
ENCLOSING SYSTEM

• QUANTIFIABLE MEASURES
• DRIVER FOR DESIGN AND DEVELOPMENT

• NOT EXCLUDING AESTHETICS

371

In the first place, we think that the field works with the reduction prin
ciple. That is the principle that says that it is possible to partition a
problem in various ways, by refinement, abstraction, or other means;
and that if you can indeed decompose the problem in such a way, then
you can solve the separate parts. If you then put these together, you
come up with a solution. We think that we are working with that prin
ciple in general; that we can do things like that, and that is in contrast to
what the psychologists are saying. A psychologist will say the way that

he goes about his discipline is that he will recognize and address certain
parts (I would say even behavior), but then will come to the conclusion
that by just summing all of those behaviors, he doesn't have a human
being yet. There are still things that escape his analysis. There is
always more to it. Just putting all the molecules together doesn't make
the object. That is their philosophy, whereas we believe that we still
work with the other ideas. Now maybe mathematicians have that idea,
too, that they can decompose, put things together out of small units, and
then come up with the whole. In this statement [Slide 4], we summarize
that we believe that the whole is indeed equal to the sum of its parts. By
putting things together, you don't get more than the parts.

The next one was that all the problems we are attacking, the way that
we reasoned about them, and the way that we looked for solutions -

we always are talking about discrete objects and the discrete way of

www.manaraa.com

372 Report of the SE Principles Working Group

approaching the solutions. We recognize a solution if we come past it in
terms of discrete steps. With induction, for instance, we apply that prin
ciple, and we say that we can understand how something works if we
are able to define the induction step and the initial state. If we think of
things that have an undetermined or indefinite length, we still go back to
this finite induction step in order to explain or prove the correctness of
things. So we believe that that is one of our specific principles that we
do not have in common with, for instance, physics, where they believe in
a continuum. Maybe they also believe, in their hearts, in a discrete
model. Nevertheless, they work as if things are continuous.

This continuity has an impact on the way that we do business and on
what we do. That leads us to look for a case analysis of our problems
and to inductive steps and abstraction. So, that is the second principle
that we think is strongly present in the things that we do.

Another principle is that we recognize that our software products, and
our software that we reason about and that we produce, are always
functioning in a larger environment as part of a larger entity. It may be it
is a system or is working in a context or in an environment. But that is
again in contrast to physics, for instance. The physicists talk about the
universe, and they apply laws that they may experiment with in the
laboratory, but then they will extrapolate from what they see and make
this avowed statement for the universe as a whole, whereas what we
are saying is that we are much more restricted. We recognize that our
product is going to function in the larger entity, about which we have
only limited knowledge, and also in which we do not participate in the
design. The context is often given to us and the properties of the con
text are given, and these properties have an impact on the product that
we are supposed to produce. We always have to understand it and it
comes in various forms to us, through the human aspect, or the
economic aspect, maybe the functional aspect of the interaction with
other systems. In all of these cases, we always have to take those into
account. That is in contrast to mathematicians or physicists who have

their universe in mind, where their solutions are valid for the entire
domain that they are looking at.

www.manaraa.com

Report of the SE Principles Working Group 373

Next we stated that some people take the attitude that what you cannot
measure doesn't exist. Now, that is a very strong statement. People
sometimes behave that way, that if you can't measure it, you should
ignore it, discard it, or simply not take it into account. That is the second
way of stating it. Sometimes people have a tendency to say, "Only that
which I can measure is of value and all the other things are immaterial."
Some of us feel that that is not the correct way of stating it. Although we
agreed that it is a good idea to try to find ways to measure things and try
to quantify the disciplines (it is a good objective), nevertheless, there are
things that go beyond the quantifiable measures. In particular, we dis
cussed the matter of taste and the way that you design software. Some
people, as we all know, have a very strong perception of taste. What
they do is look for the elegance in the solution, the beauty in the algo
rithm, and the lines of the program. We want to recognize the aes
thetics as one of the factors that has an impact on the thing you do. So

we rephrased it into this form [Slide 4] and said it is good to go after
ways to quantify things and also to find new methods for quantification.
But on the other hand, we do recognize the importance and the con
tribution of other factors. But to go for the quantifiable measures is a
principle that is productive in this discipline. So those were the four
principles that we added to the principles of yesterday.

Now, you may remember that we had the different categories yesterday.
We had the principles of philosophy, the general principles, the topic

principles, and the principles of methodology. We added to that list.

We looked at the curriculum. At first we tried to answer the following
question. If you look at the curriculum, as proposed here, [Appendix B,
MSE Curriculum] and then go through these topics step by step, can
you indicate the principles that underlie a particular topic? After a dis
cussion, we came to the conclusion that we were not doing it and we
couldn't. It might have been possible if from the very beginning we had
tried to come up with fairly concrete principles for each of the topics.
But what we have done instead is come up with much higher level prin
ciples. We came to the conclusion that we could not identify principles
underlying each topic. The reason for not being able to do it was we
had uncomfortable feelings about the way that the curriculum is
presented.

www.manaraa.com

374 Report of the SE Principles Working Group

We have the following criticism. The presentation itself lacks the right
organization in two ways. It lacks order and it lacks hierarchical decom
position. The way that it is right now, it is a flat structure of a number of
topics, and it is not clear in which order these topics should be
presented in the curriculum. We also think that the modules are not
grouped together in a useful way. We would like to see how these
modules fit together to form other units that are major components of
the program. We also had a major objection to the packaging. We
thought that these topics would not make sense in the form of short
courses that could be presented in a limited amount of time.

There were some suggestions of how you judge these modules and
what would be the kinds of things that can help you to design them. We
came up with four criteria to judge whether you want to include some
thing and how to structure it. The first is that if you've got a topic, then
you need to find the relevant theory behind it. Maybe it is not very
strong; maybe it is. You have to determine what the weight is going to
be. The next criterion is what are the applicable methods that apply to
the topic? What is there that can help you to make it practical, to apply
it? The third one is what available techniques are there to support the
topics that you propose? The last one is the assessment that applies to
the former three, but also to the topic itself. In whatever you do, the
most important thing is the scientific, analytic approach to it. Having
gone through the topic" defined the substance of it, and found what the
theory is behind it, then assess the value of it, the applicability of the
methodology, the economic value, and so on.

SLIDE 5. BIASES IN PROPOSED CURRICULUM

• EMPHASIS ON FORMAL METHODS

• NEGLECT OF SYSTEMATIC PRACTICES
• PROCESS OF SOFTWARE ENGINEERING NOT ADEQUATELY

COVERED

• LACK OF DISCERNIBLE CONCERN FOR COMPARATIVE
EVALUATIONS; LAYING THE FOUNDATIONS FOR GRADUATES
TO MAKE JUDGMENTS ABOUT FUTURE TECHNOLOGIES

Next, we observed in the way that the curriculum is described, there is a
bias toward formal methods [Slide 5].

www.manaraa.com

Report of the SE Principles Working Group 375

Some of us argue that this bias is, by itself, not a bad thing. It is actually
good to look for formal methods. That by itself is not a criticism, but it
has a side effect that may not be good. The side effect is that you
neglect to observe that there are systematic techniques right now in
place that substitute for the principles or the formalism. Some of those
are valuable and therefore should be paid attention to.

Another specific criticism was that if you look at the list of topics, the
process of software engineering itself is not strongly represented. That
is a specific criticism.

We did come up with yet another category of principles. At the end of
our discussion, we said, "Let's give it one more try, and see if we can
come up with more specific principles for each of those topics." We
don't have an exhaustive list, but we did recognize that it is possible to
come up with such principles [Slide 6].

SLIDE 6. TOPIC AREA PRINCIPLES

• PRINCIPLE OF DESIGN: MAKE THE OBJECTIVES CLEAR

• CUSTOMER SATISFACTION

• OPTIMAL PERFORMANCE

• MINIMUM CODE SIZE

• RELIABILITY

• PRINCIPLE OF TESTING: VIEW IT AS VALIDATION, NOT
VERIFICATION

• PRINCIPLE OF REQUIREMENTS: REQUIREMENTS ARE
DEVELOPED THROUGH ITERATIVE INTERACTION BETWEEN
DEVELOPER AND CLIENT

We asked questions like, "What would you say is the first thing to do
when you talk about software design?" The answer is you have to make
your objectives clear. What are the goals of the software product? Is it
reliability? There are a number of possible answers to the question.
The principle is that the first thing that you do when you start designing
is to make the purpose and the objectives of that product clear.

Another principle is that testing by itself is not going to be satisfactory.
Verification is different, but we do recognize that the focus of testing is
validation, to see whether the kinds of things that you have in mind for

www.manaraa.com

376 Report of the SE Principles Working Group

the software indeed are there. That is the kind of a thing that you can
test.

With respect to requirements, the principle is that requirements cannot
be precise and accurate. That has certain consequences. If you adopt
that principle, you know that you have to go through an iterative process
between the client and producer to make the requirement more specific.

Our conclusion is that the curriculum design should go through a next
round, and that the first things that should be done are determining the
order in which topics will be presented, and the grouping of modules into
clear entities. If we have that kind of an organization, I think that we can
come back to the principle question.

One last thing: we think that we actually did a good job in coming up
with the general principles, but that you cannot attach those to specific
topics. Those principles should be the things that are always on the
side in the matrix structure, while the specific topics are across the top.
Those are the things you can always fall back to. That has an impact on
everything that you teach and on all the topics.

Bill McKeeman: I have one concern that I expressed yesterday. I saw
no attention being paid to the student. Curriculum is a state transition
diagram on students. I don't think the state of the student, before and

after, has been taken into account, either motivation or knowledge.

Nico Habermann: That is a good remark. We did not address that at
all.

Dick Fairley: Yesterday someone raised the point that it may not be a
good idea to try to modularize such a curriculum, because there is such
a feeding and reinforcement of the various issues that we talked about.
Did you address that point?

Mary Shaw: One of the things behind the conclusion is that there was a
general feeling that the curriculum should be defined as an entity before
it was broken out into modules. Then the conceptual skeleton on which
the entire curriculum hangs would be clear and would be the supporter

www.manaraa.com

Report of the SE Principles Working Group 377

of the design of the curriculum as a whole. This should then show the
way to breaking the material out into modules.

Susan Gerhart: I thought that we felt that we were missing the principle
of modularization in the curriculum design. That did not come through

to us at ali.

Nico Habermann: We did not find the principle by which the designers
came up with this particular set of modules.

Dave Wortman: We need the system model for the modules.

Ev Mills: My impression was that the modularization was partly in an
attempt to make these topics both fit into this curriculum and be suitable
for other types of short course presentations. I wonder if there is always
a conflict when you try to do that. Have you talked about that potential
problem?

Nico Habermann: We spent a lot of time on the packaging, and we
came to the conclusion that that was not satisfactory. Our conclusions
were that you Should not try to do both at the same time. You should
first come up with an overall design of what kind of structure the cur
riculum has, then order how things will happen, and then try to carve out
things into smaller parts and make several packages that can be taught
separately.

Ev Mills: I guess that your answer is the same. But I was thinking
about this dual purpose of type of instruction, both within a regular de
gree program and also as a form of instruction for industry on a short
course basis. There is a conflict there, which I think is going to cause

problems.

Nico Habermann: Yes. We recognize the problem, but once again we
propose that you first ignore these two issues and once you've got the
structure, then address them separately. That was our advice.

Gordon Bradley: I guess we don't believe in reductionism for the cur
riculum. We think that the curriculum is more than the sum of the

www.manaraa.com

378 Report of the SE Principles Working Group

modules and that breaking it up and trying to teach it in industry may kill
the object. It is not clear that you can take something you taught in two
years, unified, and break it up into pieces and teach the same thing by

teaching the pieces.

Ev Mills: I agree. That is what I was hoping that you would think.

Gordon Bradley: I don't know whether there was universal agreement
on that.

Nico Habermann: It was actually nice for us to discover that. We had
just been discussing this principle of reduction at length, and came to
the conclusion that we believed in it. Then we applied it to the cur
riculum and came to the conclusion that we did not believe in it.

Norm Gibbs: Did you deliberate about what should be done in the case
where companies have people that they would like to have reeducated,
but that they are too valuable to release for long periods of time to have
university experience? Did you really address their needs?

Nico Habermann: We did not address that. Is there anybody in the
room who would like to discuss that question?

Dick Fairley: I would observe that perhaps we can't talk about educa
tion of industrial people, but only the training of industrial people in cur
rent techniques; education rightfully belongs somewhere else.

Nico Habermann: I don't believe that. I would like to hear AI's opinion
on that.

AI Pietrasanta: I absolutely hope it is not true. I believe that we can
continue to educate, in the full sense of the word, industrial people. I
think that they need to have a level of experience to absorb the educa
tional objectives of this program.

Dick Fairley: Let me clarify. In the context of what Norm said, that you
can't release your people, I agree. If you can release the people and
bring them to Thornwood [IBM Corporate Technical Institutes), you can

www.manaraa.com

Report of the SE Principles Working Group 379

educate them. But if a person cannot be released from the job and can
only get there a few hours a week over a long period of time, then
perhaps you can't achieve the educational objectives, but only training
objectives.

Nico Habermann: I still don't believe that. I get educated by doing this,
for instance, today and yesterday. I really get educated. There are
some people who have good ideas that I have never thought of. I was
not here particularly for training purposes. But I do think that if you have
a certain level of understanding, then it is certainly possible within a
short amount of time to get educated in some of this.

Mary Shaw: I do not really believe that the reductionistic arguments
don't apply to the curriculum and that it is inevitable that you can only do
training. I believe that the reductionistic position does not simply say

that the sum is the whole of its parts, but also recognizes the rule by
which those parts are recombined. And so, in the particular case of the
education of professionals, the fact that the teaching is done in units
rather than as a complete whole doesn't mean that it will fail to educate.
It is necessary to be careful about establishing the context of each of
these units, to make sure that the units are clear as to what they contain
and how they relate to other units, and to invest energy and make sure
that the combining of those units actually takes place, overcoming the
difficulties that are enclosed by this fragmentation and the periodic
presentations. But I don't believe that it is impossible.

Jim Tomayko: I'd like to make one general statement about principles
in relation to software engineering. I notice that whenever we talk about
this, there is a certain amount of awkwardness. And then, after you
bang away at it a while, there is a certain amount of frustration at the
other end. I have a little theory as to why I think this is happening. We
have been following the model that if we go from good basic science, it
leads to better engineering. When you look at the other kinds of
sciences besides computer science, like biology and psychology, you've
got scientists studying living things. If you have sciences like chemistry
and physics, you've got scientists studying phenomena that are nonliv
ing but they are natural. Then you have computer scientists, who are

www.manaraa.com

380 Report of the SE Principles Working Group

studying things that are neither living nor natural. I think that this is
really an important distinction. We are studying an artifact that we made
ourselves. I don't want to get into the "computer science isn't a science"
debate because I don't care whether it is or not. I think for this discus
sion it doesn't matter. The point is maybe the way that we think about
things relative to existing science and engineering doesn't work in this
case because we are dealing with a phenomenon that is completely
different.

Nico Habermann: In some sense, I think that what we discussed in our
group denies that. You see a clear correspondence with other dis
ciplines. Indeed, we also see clear distinctions. But we did not come to
a conclusion that there is really something going on here that is entirely
different from other things that have been done or are still being done in
other disciplines. We recognize, for instance, that we have in common
with the physicists the experimental nature of the way we go about our
jobs. I believe what we do is analyze and make models. Instead of
theories, we often make models beforehand and then analyze the ade
quacy of those models afterwards. We borrow from mathematics in the
way that we form models. We have done that in the form of data
abstraction and data encapsulation and so on. We have that in com
mon with the mathematicians. You can see that there are lots of things
where there is an overlap. But on the other hand, in the principles that I
showed here [Slide 4] just now, we recognize that there are certain
things that are more specific to software engineering than they are to
other disciplines. And so, you also see the distinction. But I think that
you put it too strongly, as if it were entirely different from other dis

ciplines, which we believe is not the case.

www.manaraa.com

Report of the Current Software Engineering
Curricula Working Groups

This working group was split into two subgroups, one concentrating on
the evaluation of existing curricula and the other trying to structure a
prototypically best curriculum. These groups combined their findings for
presentation.

Report of the Subgroup on Existing Curricula

This is the presentation made by AI Pietrasanta, IBM Corporation,
summarizing the discussions of the subgroup on existing curricula.
This subgroup was charged with examining the programs at various
schools to see what lessons could contribute to the development of
the SEI graduate curriculum.

The participants were: Dave Budgen, Bob Glass, Bill McKeeman,
Walt Seward, Jim Tomayko, and AI Pietrasanta, subgroup leader.

The group was given the following questions to discuss:

1. What are the educational prerequisites of a Master of
Software Engineering degree program?

2. What are the experience prerequisites of a Master of
Software Engineering degree program?

3. What are the similarities among the existing Master of
Software Engineering programs? What are the differences
among them?

4. What are the focus and content of the typical undergraduate
software engineering project course? Of such a graduate
level course?

5. What are the strengths and weaknesses of the current
Master of Software Engineering curricula?

6. Where do the staff of the current software engineering educa
tion programs come from?

7. What is the group's evaluation of the SEts proposed cur
riculum?

AI Pietrasanta: We have representation from the Wang Institute, Seat
tle University, the University of Stirling (Scotland), Texas Christian
University, and the Air Force Institute of Technology. So, I would say
that we have excellent representation from the universe of existing
software engineering programs. The way that we looked at our charge

www.manaraa.com

382 Current SE Curricula

was to try to investigate these existing programs and extract from them
advice, counsel, direction and problems to feed into the SEI for its cur

riculum.

Now, in that context, yesterday I presented two of the subjects that we
looked into - student prerequisites and faculty. And it appeared that
they were two of the interesting ones to start with, because they both
generated some comment in the meeting and after. As a result of that,
we have revisited those two subjects for about an hour this morning.
And I want to revisit them for you nearer the end of my presentation.

We spent some time on the question of the student project as part of the
curriculum. There was absolutely no question that the project must be
part of the curriculum. Project team size tends to be on the order of
three to five individuals and the amount of time spent varies; but
generally, I would say that it is a full year. In those cases that it was not
a full year, the recommendation was that it become a full year. Wang
actually conducts it in two separate parts. The Air Force would like it
longer than theirs currently is, and Seattle and TCU tend to be a full

year.

The Stirling program conducts its project outside the university. It, unlike
the other programs, does not require industry experience for admission,
so it tends to compensate for that by building in, to the extent possible, a
pseudo experience level by having their students intern six months in
industry.

Continuing to discuss the project component, we looked at some
parameters relative to it. What is the purpose of it? There is general
agreement that you want to build a working product. You've got to
come out with something tangible at the end of this project activity. The
problem with establishing a working product is: how big can you make
it? Obviously, the larger, the better, the more complex, the better, but
you are constrained in terms of time or people. Should you build that
product as sort of stand-alone or can you possibly during the project
have that product ultimately integrated into something larger, which is
much closer to a real life experience?

www.manaraa.com

Current SE Curricula 383

You want the student to participate through a series of process steps,
ideally all of the process steps (requirements, analysis, specification,
design, code, test, integration, etc.) because that is the sort of live ex
perience that you are trying to give them. Clearly the problem with that
is trying to cover them all. Sometimes the project does not cover all of
the process steps, but does a good job in covering some of them.
There are pros and cons to that approach. So, don't think that this is
revolutionary. The fact is the project is intended to be a microcosm of
the real world; if you micro that microcosm too much, you lose sight of
the real world; and yet, you are constrained by the number of people
and the length of time available.

In addition to building a working product, in addition to going through
process steps, we believe that measurements need to be taken of the
work. We are talking about estimating the work to be done. We are
talking about measuring against those estimates. We are talking about
evaluating the data you collect against those measurements. And the
parameters would be time, effort, quality measurements, etc., very valu
able experience, obviously very real life experience, not only to do the
work, but to measure what you are doing in order to improve what you
are dOing.

The interesting problem here is that it is difficult to estimate the project if
everybody knows that it is going to be completed in thirteen weeks and
it's going to take four people and you have already defined it that way.
What is it that you are estimating? But the group believes that there are
creative ways around that. There are ways to build in estimating tech
niques, there are ways to build in scheduling techniques, measurement
techniques and quality control techniques into a project. And that is
very valuable to do.

How do these different programs manage these projects? A variety of
answers arose. Generally, however, a faculty member acts as the
"manager." And it varies all the way from that faculty member being an
active participant in the project, to the other extreme, where if a student
walks into the faculty member's office and asks a question, he will
answer it; but other than that, the faculty member has little involvement.

www.manaraa.com

384 Current SE Curricula

So, there seems to be a spectrum of faculty involvement under which a
student may often be "a project leader." Sometimes throughout the
whole project, other groups rotate the project leader assignment during
the length of the project in order to convey that experience. The dif
ficulty there, among others, is the active faculty manager. It is a tremen
dous time drain, in addition to whatever else the faculty member is do
ing.

The project ought to be tool rich. There ought to be a plethora of tools,
in all of these various phases, that the project participants are able to
play with and use, in fact must use, in order to complete the project.
The problem is that it takes a lot of time for the students to learn the
tools that they need in the project. There may be prerequisite con
ditions, that you've got to learn the tool, before you use the tool in the
project. And there is no such thing as a standard tool kit. And so, we
could not give you back, "This is the set of common tools a project ought
to use," although I will share with you some lists that we have put
together.

Finally, what do you want the student to get out of it? You want the
student to be able to exercise judgment, technical judgment, during the
course of product development, on tools, on techniques, and what you
are trying to do, in this constrained period of time, is to build up that
technical judgment capability.

Just one final point on the project, and that is, I asked the question, "So
there is no standard tool kit so what do you use?" And under
"Languages," the top three are e, Pascal, and Lisp, each with two votes.
The next four are Ada, Prolog, Modula-2 and Awk, each with one vote.
But I think you get a sense of the language level that is being used here,
which I think looks good.

Now, to continue, consider management tools if we are going to do a
project and manage the project, it would be nice to teach how you can
'configuration manage' such an activity. A couple of examples were
ReS and sees. Other examples include specification tools, design
tools, profilers, editors, performance analyzers, comparators, document

www.manaraa.com

Current SE Curricula 385

preparation tools. And it supports the statement before; it makes the
project tools rich. That is one of the benefits that students are getting
out of it. There may not be a standard set, but choose state-of-the-art
tools, acquaint them with the best of breed, if you possibly can.

Relative to the proposed SEI curriculum (see the Appendix), other than
discuss the project, we did two things. One is we nitpicked the pages
with all the modules, but I am not going over that because Jim Tomayko
made notes on what we felt was right and wrong and overemphasized
and underemphasized. But we made some general observations.
Drawing from the experience of the existing programs, I was personally
surprised to find out how high the percentage of the program is core
material. I said I thought the core curriculum percentage was too high in
the SEI program, which is stated as 33-50%. It turns out to be that
existing programs have a required portion that is much higher than that.
If you consider the core plus mandatory project, what percent of the total
time is that? And it turned out to be something like 27 out of 36 units.
There might be room for a couple of electives. In other words, virtually
all of the program was predefined. That was true with Wang and TCU.
The Air Force has a high percentage of required content. They have
beyond the core some specialty tracks but the student must take one of
a limited number of specialty tracks. And once again, the freedom of
the electives is very limited.

This raises the question: if you require so much, what do you do with
experienced students coming in the door who know the material? First
of all, experience shows that this doesn't seem to be a big problem.
Second of all, you've got some options. One is that you can give them
an exam on the material. If they pass the exam, they don't have to take
the course. Or perhaps even a better approach is they take the course,
but you give them more advanced assignments and special assign
ments during the course, so that you keep them interested and you
keep them at their level, which might be beyond some of the other stu
dents. So, that doesn't seem to be a problem, even with the heavy core
course requirements.

www.manaraa.com

386 Current SE Curricula

The other question, sort of the reverse of the coin, is: what if the student
walks in, not knowing some basic material? And there are examples of
that that have come up. Some of the basic subjects were hardware ar
chitecture, software architecture, discrete math, data structures. Now,
here is the either/or choice: You can throw that stuff into the master's
program or you can set them as a requirement to enter the master's
program. It seems to me that the sense I got out of my group, they were
set as a requirement of entry, generally. And now, the student walks in
and meets a lot of other qualifications, but may not have one or two of
these subjects. You say "Go get them. Take a course and once you
pass that course, not for credit in this program, then you qualify for this
program." And that is being done.

We asked the question, "Is there a technical track and a management
track?" The management courses in the SEI curriculum, do you mix
those with technical ones or what do you do? There was a pretty
uniform opinion from our group. You must have a set of technical
management courses like project management, and you give them to all
of the students. In other words, the ones who are not management
today and may not ever be management, they take those project
management courses. You do not make the distinction. Even though
it's got the label of "management" on it, that material is so basic that all
students must get it. So, leave it as part of the core and give it to
everyone. Now, those who are in management or those who aspire to
management may in fact take more of that material in specialty or elec
tive courses.

I asked the question of tools in the project and I asked the question,
"What about tool use in courses, not projects?" And I got a split vote
here. Two of the five schools have heavy use of tools in courses.
Three of the five have little use of tools in courses. Coincidentally, the
two that use tools heavily are the non-university two (Wang and the Air
Force). I am not sure if there is any correlation. The three who have
little tool use built into the courses say there should be a lot more. So,
the general recommendation is that to the extent possible, nonproject
courses should have built into them the use of tools.

www.manaraa.com

Current SE Curricula 387

I asked the question on grading and I didn't get any revelations here.
Everybody is grading on an A through F or 100 through 0 system, ex
cept, in some cases, the project may just be graded Pass/Fail.

Revisiting the question of faculty and students: Now, we are clearly
recommending - and I want to reconfirm what I said yesterday - we
are clearly recommending that the program should be oriented to people
who have working experience and obviously, the program should have a
faculty who has the qualifications to teach it.

Now, if you are going out and inserting this program into a university,
you are probably going to head down the track of having the university
develop the faculty, and the SEI may be giving some help to do that.
But through on-the-job training, through the SEI courses and through
the use of adjuncts coming in from industry (who can help out on some
of the courses), the program can get off the ground and then gravitate to
the point where it is self-sustaining and strong.

If the recommendation is not to have any experience - which we are
not recommending - then we are saying that it is going to be a longer
curriculum because, somehow or other, you have to build in a pseudo
experience, which isn't going to be great. But somehow you've got to
do that. We call that the "Stirling sandwich," thanks to Stirling Univer
sity. They not only have the curriculum component, but they do intend,
to the extent possible, to build in a surrogate of experience during the
program. There is much more I could say about that, but I won't. So, I
will stop right there. Thank you.

www.manaraa.com

Report of the Subgroup on Best Curriculum
This is the presentation made by Jon Bentley of A T& T Bell
Laboratories, summarizing the discussions of the subgroup on best
curriculum. This subgroup concentrated on identifying the best that
can be done now to improve software engineering education.

The participants were: Jim Collofello, Manny Lehman, Bill
Richardson, George Rowland, Dick Thayer, Dave Wortman, and Jon
Bentley, subgroup leader.

The group was given the following questions to discuss:

1. What should be the focus and content of the typical under
granduate software engineering project course? Of such a
graduate-level course?

2. At what in the curriculum should the project be scheduled?
At what point in the software Iifecyc/e should the project
start?

3. Where should the staff of software engineering education
programs come from?

4. What is the group's evaluation of SEt's proposed curriculum?

5. In a Master of Software Engineering curriculum, which topics
should be in core courses, and which should be electives?

Jon Bentley: We told you that we decided not to do the original ques
tions in order, but instead look at the parameters, deciding the kind of
curriculum which to have. Today we discussed the core curriculum,
which included a number of issues that have already been raised. So, I
am going to be able to proceed rather rapidly.

We have a number of general comments on the SEI curriculum. One
thing that bothered several people is: are we concentrating too much on
"how to go out"? One example is that at our school, our students go out
immediately and go to work for Hughes. I believe that we do have to do
a small amount of this, primarily to underlie, to illustrate, that it isn't the
long-term education, but the principles.

Something else that bothered us, that bothered Manny Lehman a lot
more than looking at the curricula, was the implicit dependence upon
the waterfall model. You just hear water falling on almost every page of

the SEI curriculum, and that traumatized him tremendously. I think that
Jim Collofello especially could point out that in designing a curriculum
you try to avoid getting too much into that.

www.manaraa.com

Current SE Curricula 389

Another point that we made on the curriculum is that, more than many
curricula, this one must be a cohesive set of courses, where the pOints
that you make in one course are not denied immediately in the next
course. You should wait a course or two before you deny them. It is
essential here, in every single example, to point out a technique and
then use it in the next course. This is going to require both good course
design and cohesive faculty.

One thing that I was very impressed about at Wang Institute, for in
stance, is that they make a point or at least make the appearance to a
visitor, that they have a cohesive faculty that tries to reinforce these
things and tries to illustrate these pOints. And that is absolutely essen
tial here.

We discussed, to some degree, the background that we would assume.
I think that we are fairly in agreement here. We assume there would be
a B.S. in Computer Science, basically in the background. We talked
about a few particular courses. We felt that you needed Probability and
Statistics for certain things, logic, some economic background, a few
particular B.S. courses that came up. We won't give those in general.
We would like to see some listed in future editions of the curriculum. It
would be very helpful to us in evaluating this.

I think that we were troubled, it is fair to say, at the dependence on
modules, where right now, you assume that you have at least 30 or 40
modules that break nicely into 15 u nits or 15-hour pieces. It wasn't at all
clear to us that that is the way the world is, because there are things
here that are obviously a half a module or a few lectures here or a
course.

We are a little bit dubious about whether you really can divide the world
up quite that strongly. We are also dubious of the size of the core, as
we just mentioned. First of all, we had to define the core. The core, of
course, is what every right thinking software engineer must know. But
we didn't have "right thinking" well defined. But once again, by "right
thinking," it is clear what we mean.

www.manaraa.com

390 Current SE Curricula

There is also this issue in the core, that there is a spectrum between the

required electives, and you must do at least one out of these four
courses. So, it wasn't clear to us what things were required electives or
somewhere in the middle. We were impressed that the current size of
the core is only four courses. The implication that what every right
thinking software engineer needs to know may be accomplished in thir

teen modules, four university courses, or an easy semester is fairly im
pressive. You know, it's like, "You can go to school for a semester and

be a software engineer." So, these are some of the issues that

bothered us.

Before we go on from this, are there any comments from the people in

the group, to elaborate on this?

From the floor: Were you in a different group from ours?

Jon Bentley: I was the one taking notes at the front. I didn't have a

chance to listen. I just took notes.

We then went through the existing core (reproduced in the Appendix)
and, judging by the number of detailed comments to Jim Collofello about

this, on several of these we recommended fairly large changes. We
suggested a number of things. I won't get into all of the details of these,
but the introduction course, we felt, should be rewritten as an overview.
In the interfaces course, we wanted to see more emphasis on the
human/machine interface. We felt quite positive that this was an essen

tial course to have. We would have reworked a number of courses. We
felt that it was important to have a course emphasizing languages, both
implementation languages, evaluation of Prolog versus other languages,
as well as requirements languages. This was an essential concept.
One of us particularly thought that there needs to be more emphasis on

the software process. We ther decided to combine a couple of the
management courses in various ways.

When we came to additional material that we felt was missing from the

core, the first thing we talked about was the notion of project ex

perience. Yesterday, we mentioned that there were several other ways
to get the corresponding experience: from exercises, individual and

www.manaraa.com

Current SE Curricula 391

group . projects, industrial experiences, previous experiences, case

studies, and situations similar to teaching hospitals. We feel that in the
core we don't want to legislate in too Draconian a fashion exactly what
we want to do. There are possibly many paths to experience.

Additional classes we came up with, that we felt should be in the core,
were formal methods in the core. Again, we felt that there were not
enough formal methods in this. The title that Manny Lehman wanted to
propose was "Calculus and Development." It is course 312 in the Im
perial College curriculum.

I felt something very important was the notion of systems, architecture
and design, a more technical course in how you build large systems. I
thought that was very obviously missing, from at least the way that we
read it. And it was quite essential to have this, an architecture of things.

Modern notions on systems engineering and ethical and legal issues
were not prominent. Other things we weren't quite as sure about were
the issues of - we wanted to say "data bases," but couldn't. We had to
say "information repositories."

Mary Shaw: Why couldn't you say "data bases?"

Jon B~ntley: I just take notes.

We also recommend an analysis course, where you combine these
various things and there is an emphasis more on management. And
since there was only one management course, we felt that there should
be perhaps more management to the core. Those are our recommen
dations. I think that it is time to open it up now for any comments,
especially from the group.

Bill McKeeman: Well, a very small thing. You have the technical com
munication and the human communication course there. I think our
experience is that you have to have that fairly late, because until they
have something they need to write about or need to present, it is hard to
get them motivated to do it well. We found it better later in the cur
riculum, rather than early, which is where the present plan puts it.

www.manaraa.com

392 Current SE Curricula

Jon Bentley: Well, I think that one thing that we came up with here is
that that is the kind of course that must be reinforced throughout the
entire curriculum. You can't have one course early on taught by a
professional technical writer and then have everyone else ignore writing
about things. This is something that you have to have, writing rein
forced and the speaking presentations reinforced, throughout the entire
curriculum. This is especially something that no matter whether you put
it first or last, it must be reinforced throughout.

Bill Wulf: Do you honestly believe that somebody who has gotten
through high school and university programs and has been out in in
dustry for a while, probably having to write some project plans and
project reports, still can't write? I mean, is there any hope for this guy?
(Laughter)

Jon Bentley: You and I eventually got PhD's, so there is some hope.

Dick Fairley: I wanted to ask a different question, and it's about the
assumed background. We hit pretty hard on the necessary background,
not only in Computer SCience but in significant work in an application
area. We were a little bit nebulous on exactly what application. Clearly,
you need more than a Computer Science background to be a software
engineer, in the view of our group.

Jon Bentley: Comments?

Dick Thayer: We agree. At that point in time, we didn't know what else
to do. We weren't sure how to go beyond that particular pOint, at least
not in the few hours available to us.

Jim Tomayko: I've got a two part question. Should we use the modules
at all or would we be better off packaging the curriculum in already exist
ing forms such as courses, or, if the modules are a good idea, are
people comfortable with having them different sizes, different lengths?

Mary Shaw: The university semester course is not a sacred size, any
more than anything else is a sacred size. The content of a module
ought to dictate the size of the units, and within some fairly liberal
tolerance the units ought to be sized to fit the content.

www.manaraa.com

Current SE Curricula 393

Dick Fairley: I think the objective of having modules is so that you can
deliver it to people in industry. And what I have heard from people in
industry is that 20 hours is about the most you can spare people. That is
five half-days in a one or a two week period. So, if the objective is to
deliver to industry, then I think that you are constrained by their view
point.

Jon Bentley: Well, this raises the important viewpoint that Fred Brooks
made yesterday, having a curriculum design in context. But my per
sonal opinion on this is that by trying to do one intergalactic curriculum
that will be applicable on any planet that we might land on in the
foreseeable future, we may do something that is optimal for that cir
cumstance and viable at no place in particular. And I am quite worried
at this point about these mere packaging issues, of modules versus not,
that are driving a lot of things. As we went through here and designed
our courses, it was clear that this is really two modules and this is really
four modules. And it was a weird chunk to be defined. I think if you
design it into the curriculum, you have to worry a lot about that.

Peter Freeman: I would agree basically with Mary Shaw's comments.
would observe also that, as in building systems, it sometimes is very
useful to decompose the problem. And I think in terms of curriculum
development that there is a good effect of driving the module level
down, so that then the curriculum designer can focus on one small,
well-defined set of material at a time. I think that that will strengthen the
module. However, as in building systems, the overall architecture must
be carefully fashioned and you must make sure that those modules can
then be reintegrated to form a well-functioning, overall system.

Jim Tomayko: So, just to summarize, modules are okay and if they
have to be different sizes, that's okay, too.

Jon Bentley: I think it depends upon a lot of the context in which the
modules are to be taught.

Mary Shaw: I think that maybe the hour is the wrong measure. The
point that you made about the dangers of trying to do simple packaging
for very diverse audiences is a good one, but is one that textbook au-

www.manaraa.com

394 Current SE Curricula

thors have confronted for years and years and years. And the solution
that we have been using to cope with the situation is that the textbook
author writes down a rendition of the material and the instructor inter
prets that material for the audience at hand. If we don't allow ourselves
to be driven by the university size of the module and don't allow our
selves to be driven by any other arbitrary size of the module, but or
ganize the material to suit its own content, then the number of hours
dedicated to the teaching of that material can be allowed to be context
dependent, unless we put some kind of artificial loading about'how you
describe something in the system. It may very well be the case that
some body of material that is motivated very highly by five years of
experience in the trenches can be taught in one long day in industry but
would take a semester in a university. So, I think we need to be a little
cautious about identifying any particular body of material by some
simple number of hours that is independent of the audience that is con
suming it.

Peter Freeman: Let me observe that there is a long tradition of separat
ing curriculum, the content and the interdependencies, from its im
plementation or the actual program. My remembrance is that there was

a good curriculum for information systems that was published in the
Communications of the ACM in May 1972. The authors very carefully

made the distinction between, "Here's our curriculum," and, "Now, here
are some suggestions as to how this curriculum might be implemented
in different contexts." And I would suggest that may be a good pattern
for SEI to follow as well.

Nico Habermann: In reference to formalism, I was wondering whether
you meant that, in terms of quantity, there weren't enough different for
mal methods explored in the curriculum or included in the curriculum,
versus what we sensed was a tendency to emphasize more the formal
approach, than say the systematic, or conventional approach. We
thought, actually, it was good to go that way. But we wanted to make
the observation that emphaSizing one particular attitude or approach
may lead to neglecting something else.

www.manaraa.com

Current SE Curricula 395

Jon Bentley: And furthermore I think academic institutions are quite

prone to be like the old drunk who looked for his wallet under the street
light, because that is where the light was, even though he lost it some
where else. Mathematicians are prone to teach academic material.
And then I think that you are right in pointing out the specific reason for
that. I think that the primary advocate of this course is in fact Manny
Lehman, who has left already. Would anyone else in the group care to
stand up and defend it?

Bill Richardson: I think that the point that Manny was trying to make,

and I will not pass judgment on it one way or the other, is that there
needed to be a core introduction, an overview, if you will, of the formal
methods, as opposed to immediately leaping into a particular formal
method after a particular pOint.

Jon Bentley: As Manny talked about it, I thought of a course that
Susan Gerhart taught at Wang. I don't know if you would care to com
ment upon that experience. Is it worthwhile to have formal methods
gathered together in one course, or should they be scattered throughout
the curriculum?

Susan Gerhart: Definitely scattering helps, having some kind of rein
forcement, taking a topic from one context and looking at it another. I
think that is very helpful.

Bill McKeeman: Christopher Strachey said, "No formalization without
insight." Insight often doesn't come until you have something to apply it
to. So lumping them together early is quite difficult.

Jon Bentley: I think it is important to illustrate and to have a balance
between showing a formal method and the state-of-the-art in the in
dustry. The thing that we addressed in our group was that people com
ing in after five years out in the real world have forgotten what the logi
cal order is. It might help to have these things addressed cohesively, in
one unit, to remind them.

Bill McKeeman: In our group we would call that "precore."

www.manaraa.com

396 Current SE Curricula

Jon Bentley: That might be an important place for precore.

Mary Shaw: I think this discussion is not quite putting its finger on the
reason for including the formal materials in the curriculum. It seems to
me that the dominant test for including material in a curriculum like this
is that things you are teaching will transcend two or three orders of
magnitude in technology improvement along whatever dimension today.
The ideas that are most likely to endure under those changes tend to be
the ones that are well-systematized; those are often formalized. So the
motivation for including formal techniques in a curriculum is that those
techniques have been codified in such a way that they are likely to be
very durable and therefore of high value to the student.

Now, given that motivation, it doesn't bother me if there is a bias in the
ultimate curriculum that favors formal methods, because I think they
have higher value per unit time invested, considering that they have
long-term payoff. But looking at it that way, it seems to me that they
clearly need to be distributed throughout the curriculum to the pOints at
which you discuss the problems to which they apply. If you isolate them
in particular courses, that very structure denies their relevance to the
problems to which they are very explicitly designed to apply.

Susan Gerhart: Let me give you an example of an informal method that
I think contrasts with the formal method. You take a requirements or
needs analysis kind of exercise, for example, a problem to determine
what is the best possible approach to take to meet that need. That
includes activities of interviewing users, collecting data in the organiza
tion, doing a lot of things that can be done systematically, of that nature,
but which are not formal methods and certainly not the sort of thing that
computer scientists feel comfortable with. That is an example of a kind
of bias that is brought about by too much emphasis on formal methods,
ignoring these things which are more than just communication skills.

Bill Richardson: I think our group discussed that point when we added
analysis as one of the items, that it was a requirement, classical
analysis, interviews and that sort of a thing.

www.manaraa.com

Current SE Curricula 397

Nlco Habermann: I have two questions to AI Pietrasanta, because he
hasn't had a chance yet. You listed tools among the things that are
needed for the courses. What is right now available and how should we
go about making things more easily available to this type of curriculum?
Can we do that through contact with industry, for instance, or should it
be that we create them in our own environments?

AI Pietrasanta: I got the sense from my group that it was going to be
rather specialized and that a particular entity will create its own environ
ment, create its set of tools. We have no agreement nor did we explore
the pOint, much beyond saying it was not possible. That is, there is no
"standard tool kit" and, therefore, there is no single set of recommen
dations which we would pass on and then encourage everybody to get

that set.

There are several candidate tools under any category that you might
mention. Our recommendation is to bring as many tools in as possible
and get as many running as possible and expose the students to as
many as possible. If there are half a dozen specification techniques, we
recommended that there be a course in the comparative evaluation of
specification techniques and the students ought to play with one at
least. What's the one? Pick your own. Pick the one you're happy with.
Pick the one you've used.

Dick Fairley: We have two full-time master's level employees at Wang
Institute whose job is to support the faculty in providing tools for
courses. And they are more than full-time jobs for those two people.
Two people can't do an adequate job in finding tools, bringing them in,
writing materials and getting them running. So you definitely need that
kind of support.

The second pOint I'd like to make relates to SEI and it is that I think
there is a great opportunity for SEI to either do directly or cause the
development of "educational strength tools," simple tools that illustrate
principles, but don't require a month or three weeks' learning time to
figure out how to use them. Maybe they are PC-based; I'm not sure, but
simple tools that illustrate prinCiples without being of industrial strength.

www.manaraa.com

398 Current SE Curricula

Nlco Habermann: My concern was actually to get access to real, live
situations, because if you do it in this way, you will never have access to
- let's say a large data base - and be able to extract any information
from that or get in touch with a large software development project at
IBM Federal Systems Division or places like that. In this way, I think
you will always remain in the realm of the toys.

AI Pletrasanta: Well, toy is better than nontoy. I think subsetting but

still forcing the student to get some hands on experience is good. And
there was a discussion of PSLPSA that I happened to hear but didn't
participate in. It is a pretty complicated tool. We have subsetted it. We
have a very small, 30-word syntax of PSLPSA. You can get somebody
to learn and use it rather quickly. You can apply it to some reasonable
size problems, with educational benefit. You don't have to spend a year
doing a requirements analysis or a specification with PSL to get the
benefits out of it. I think you can do that for every tool. If some of these
were packaged for tutorial benefit then that would be the best of all.

Mary Shaw: Most of the project descriptions that I have seen over the
years have been for the development of projects in isolation. Has
anyone thought about the feasibility of bringing up not just a tool but the
data base associated with some real or simulated project, so that you
start the project by saying, "Well, the scenario is that it is now month 37
and here is the situation, and you need to take the next step," so that
there is all of this real data to work within?

AI Pietrasanta: At IBM, we have a library management tool. It is prob
ably the biggest thing in the world. It is impossible for anyone person to
know. It stores all the modules and carries them through and tracks

them and it stores a lot of planning and control and management data.
And I have explored some of the work that the Japanese companies are
doing. They have outstanding, integrated library management tools,
spanning the whole development process, incredibly useful tools. It
would be great if we could subset something like that, down to a tutorial
level.

Mary Shaw: But including the data and not just the tools.

www.manaraa.com

Current SE Curricula 399

AI Pietrasanta: Yes. The technical flow of the modules, the flow of the

data and the flow of management information, which is all integrated in

some of these.

Bill McKeeman: There are at least two experiences that we had in

existing curricula which address that. In the C Kit projects I run, the

students move into a project that is partially completed and do a piece of
it which must interface to the existing pieces. While they go through an

entire development cycle there is an existing world within which they

have to live.

Susan Gerhart: Another example is Walt Scacchi at the University of

Southern California and his "system factory." He runs a project course
with 35 students, they work on a 9-month basis, and they have

thousands and thousands of lines of code that they are developing

through these 9-month kinds of iterations.

AI Pietrasanta: Well, I think one of the senses I get out of this, in
addition to SEI packaging some model curricula and curricula content, if

SEI could package some tutorial aids and tool-use packages, that would

be of immense benefit.

Nico Habermann: AI, you have a lot of experience in evaluating a cur

riculum. Has your group discussed that issue? I think that we should

consider not only these items of curricula, but how it is going to be

evaluated, whether it is effective or not.

AI Pletrasanta: We had our chart that said, "Goals of the curriculum

and how to assess those goals," and we didn't get to it, I'm sorry to say.
Does anyone in my group care to comment? Bill, how do you evaluate

the Wang curriculum?

Bill McKeeman: One small point is we keep close track of our

graduates to see how well they are doing with what they were given.

AI Pietrasanta: Just one, final comment. I believe this is in the area of

advanced education rather than training. I think that advanced educa

tion is to prepare a person for career growth. And I find it very difficult to

www.manaraa.com

400 Current SE Curricula

measure an education program that is going to prepare a person for
future growth. You can track the students, but I believe it would be
wrong to try and set measurements on the program or assess the
program simply on the basis of immediate skills that the student walks
out with. You may be orienting the program in the wrong direction by
trying to put measurements that measure the wrong thing. That is a
negative comment of the measurements.

Bill McKeeman: Your first of the day, I might say.

www.manaraa.com

Report of the Future Software Engineering
Curriculum Working Group

This is the presentation made by Dick Fairley, Wang Institute, sum
marizing the discussions of the working group on future software en
gineering curriculum. This working group was charged with the task
of looking 10 years into the future of software engineering to examine
the educational needs for the practitioners in the 1990's.

The participants were: Bruce Barnes, Vic Basili, Fred Brooks, James
Comer, Peter Freeman, Norm Gibbs, Ev Mills, Bill Wulf and Dick
Fairley, Group Leader.

The group was given the following questions to discuss:

1. Will software engineering be a recognized engineering dis
cipline?

2. Will software engineering education programs be tailored to
suit local industry?

3. Will the profession develop specializations? If so, what might
those specializations be?

4. Will software engineering be distinguishable from computer
systems engineering?

5. Will advances in tools, workstations, and other technologies
make software engineering fundamentally different 10 years
from now?

6. What constitutes change in software engineering practice?

7. Can we expect a greater rate of change in the software en
gineering profession over the next 10 years than occurred
over the past 10?

8. What specialty areas are emerging, and what levels of
specialization are developing?

9. What is the group's evaluation of SEts proposed curriculum?

Dick Fairley: If you recall, yesterday the Future of Software Engineer
ing Working Group started from Mary Shaw's slide [Slide 1] showing
software demand exceeding capacity and discussed what has to hap
pen to mitigate current trends. We observed that many of the words we
are using at this meeting are the same words we used 10 years ago, but
believe we have a more sophisticated and deeper understanding of the
issues [Slide 2]. This may not be true, but it is the premise we will
operate on. We tried to keep that as a guiding principle this morning.

www.manaraa.com

402 Report of the Future SE Curriculum Working Group

SLIDE 1. SOFTWARE DEMAND EXCEEDS CAPACITY

Code Size y
10.0MBits ~~~~~~~~~~~~~~~

Code ~
Size ./

1.0MBits ~~~i~~·~/i~~~~~!~~ ~ ... Annual Productivity -. 0.1 MBits .j.---+---..,f----+----+---+--~
1960 1965 1970 1975 1980 1985 1990

Year

ON BOARD CODE SIZE FOR MANNED SPACECRAFT
AND ANNUAL PROGRAMMER PRODUCTIVITY

DEMAND FOR QUALITY SOFTWARE RISES FASTER
THAN OUR ABILITY TO PRODUCE

SLIDE 2. WHAT HAS TO HAPPEN TO MITIGATE
CURRENT TRENDS?

• REUSABILITY ON A GRAND SCALE
• SOME DEGREE OF AUTOMATION

• INDIVIDUALS
• TEAMS

• PACKAGING OF SOFTWARE

• CAPTURE EXPERTISE
• MORE REPRESENTATIONS

'AI
• SHIFT FROM LABOR INTENSIVE TO CAPITAL INTENSIVE

THINKING

• ORDERS OF MAGNITUDE INCREASE IN COMPUTING POWER
PER DOLLAR

• NARROW GAP BETWEEN THE BEST AND MEDIOCRE IN BOTH
COMPANIES AND GROUPS

• DECREASE TECHNOLOGY ADOPTION TIME LAG

• PAY MORE ATTENTION TO
• PROBLEM DOMAINS
• APPLICATIONS AREAS

• MORE AND BETTER PARADIGMS AND SUPPORTING TOOLS

• CHANGES IN CONTRACTING PRACTICES AND DEVELOP
MENT PARADIGMS

www.manaraa.com

Report of the Future SE Curriculum Working Group

• BETTER SUPPORT FOR COMMUNICATIONS AND COORDINA
TION OF WORK ACTIVITIES

• BETTER MEASUREMENT

THE WORDS ARE THE SAME AS 10 YEARS AGO,
BUT THE SEMANTICS ARE DIFFERENT!

403

Our group talked yesterday about reusability as a key issue [Slides 3
and 4] and what kinds of implications there are for what people need to
know to work within that environment. If capturing expertise becomes
an important issue, then what do people need to know in that area? We
have more work to do there and just didn't have enough time. It in
dicates a direction that the SEI might want to do some more thinking
about. What is the effect of greatly increased computing power [Slide 5]
and its curriculum implications? We didn't say.

SLIDE 3. WHO WILL TEACH THE CURRICULUM?

• NOT TRADITIONAL COMPUTER SCIENCE RESEARCH
DEPARTMENTS

• SPECIAL TRACKS IN THE MASTER'S OF COMPUTER SCIENCE
PROGRAMS

• INDUSTRY SUPPORTED UNIVERSITY INSTITUTES

• IN-PLANT DELIVERY
• NATIONAL TECHNICAL UNIVERSITY OR TV DELIVERY
• TAILORING TO LOCAL NEED BY NON-RESEARCH UNITS

• COMPUTER SCIENCE AND SOFTWARE ENGINEERING WILL
SPLIT

• NOT WITHIN 10 YEARS
• THE SPLIT WILL NOT BENEFIT COMPUTER SCIENCE OR
SOFTWARE ENGINEERING

www.manaraa.com

404 Report of the Future SE Curriculum Working Group

SLIDE 4. ASSUME CURRENT TRENDS HAVE MITIGATED

• REUSABILITY
• TO SUPPORT, NEED MORE POWERFUL MODELS OF
ABSTRACTION AND INSTANTIATION (NOT HANDBOOK)

• BUILD NEW PRODUCTS BY MODIFYING EXISTING ONES

• ROLE OF MODULE GENERATORS
• BASED ON SPECIFICATIONS (?)

• CURRICULUM
• ABSTRACTIONS
• OBJECT-ORIENTED APPROACHES
• SPECIFICATION-BASED PROGRAM GENERATORS

• CAPTURE EXPERTISE
• KNOWLEDGE ENGINEERING
• BROADLY CONSTRUED SYSTEMATIC APPROACHES TO

DOMAIN ANALYSIS

SLIDE 5. EFFECT OF GREATLY INCREASED
COMPUTING POWER

• WE SEE NO QUALITATIVE CHANGES IN HARDWARE SUCH AS
HAPPENED AT XEROX PARC IN THE 1970'S

• DISAGREEMENT ON EFFECT OF LARGE SCALE, RAPID
RESPONSE PROJECT DATABASES

• WILL WIDEBAND COMMUNICATION BE AVAILABLE HOME TO
OFFICE IN 10 YEARS?

• NATURE OF SYSTEMS ASKED TO BUILD WILL CHANGE
• 10-FOLD INCREASE IN SCREEN SIZE WILL CHANGE THE NA

TURE OF TOOLS

The Future Software Engineering Curriculum Working Group started this
morning with a rambling discussion before we found a theme to pursue.
A quote from Bill Wulf kept us on track this morning: "Ten years is not

very long." It is not after all, and maybe some things that we can see in
50 years probably won't happen in 10 years. We tried to keep that as a
guiding principle this morning.

www.manaraa.com

Report of the Future SE Curriculum Working Group

SLIDE 6. FUTURE UNDERGRADUATE EDUCATION

• UNDERGRADUATE (COULD BE EITHER WAY)
• COMPUTER SCIENCE MAJOR

• STRONG MINOR (8 COURSES) IN AN APPLICATION
AREA

• SENIOR YEAR SEQUENCE IN SOFTWARE ENGINEER
ING

• APPLICATIONS AREAS
• CONTINUOUS SYSTEMS (BASED ON DIFFERENTIAL

EQUATIONS)

• FINANCIAUBANKING
• MEDICINE/BIONICS
• SENSORIAFFECTOR

• SYSTEMS/SOFTWARE
• TELECOMMUNICATIONS

• CAD/CAM/CIM
• DISCRETE MODELING

405

We talked a lot about what the division between undergraduate,
Master's and PhD level work might look like in software engineering in
10 years. At the undergraduate level [Slide 6], we believe that there
should be a computer science major with a strong minor in an applica
tion area, or it could be the other way around. It might be a major in an
applications area with a strong minor in computer science or a dual
major with some material in the senior year, specifically in software en
gineering. We thought that an internship is desirable, but probably im
practical. We believe that as the field evolves, apprenticeship will be an
important part of future software engineering curricula.

www.manaraa.com

406 Report of the Future SE Curriculum Working Group

SLIDE 7. FUTURE MASTER'S SOFTWARE ENGINEERING
EDUCATION

• MEDICAL DOCTOR MODEL
• SYSTEMS BUILDERS
• COMPLEXITY SPECIALISTS
• COORDINATORS OF INTERDISCIPLINARY TEAMS

• "APPLICATIONS" BACKGROUND - PERHAPS A
SOFnNAREBACKGROUND

• SYSTEMS ENGINEER OF THE FUTURE

• ENTRANCE REQUIREMENTS
• COMPUTER SCIENCE BACKGROUND

• APPLICATIONS AREA BACKGROUND

• INTERNSHIP/APPRENTICESHIP COMPONENT

• PRIOR EXPERIENCE
• MAJORITY OF GROUP FELT NECESSARY
• MINORITY OF GROUP FELT DETRIMENTAL

The question of prior work experience for entry to master's programs
was debated [Slide 7]. The majority of us felt that some kind of ex
perience is needed for a couple of reasons. First, to raise something
more general, educators talk about mathematical maturity. There is
also something called "software maturity." Another point is that having
experienced people in class raises the level of discussion, the level of
understanding, the speed with which you can cover material and the
depth to which you can go. The minority position was that the argument
against previous experience is analogous to the argument about why
high school students should not learn Basic. There are so many bad
habits to undo that it takes a lot of time and effort to instill good habits.

SLIDE 8. STRONG POSITIONS OF
FUTURE WORKING GROUP

• SOFTWARE ENGINEER IS THE CRITICAL SYSTEM ENGINEER
OF THE FUTURE!!

• SOFTWARE ENGINEERING IS NOT AND WILL NOT BE A SUB
DISCIPLINE OF COMPUTER SCIENCE!!

• SOFTWARE ENGINEERING WILL NOT MIGRATE TO THE UN
DERGRADUATE LEVEll!

• "WE DON'T TEACH SURGERY TO UNDERGRADUATES."

www.manaraa.com

Report of the Future SE Curriculum Working Group 407

We thought that this slide [Slide 8] needed bold emphasis. The software
engineer is the critical systems engineer of the future. Software en
gineering is not and will not be a subdiscipline of computer science, but
a separate discipline. I hear some of you hissing.

We discussed, "Will software engineering migrate to the undergraduate
level?" and concluded that it will not. You don't teach surgery to under
graduates even though they do dissect frogs to get some idea of what it
might be like. They certainly don't perform open heart surgery! We
don't see a lot of migration. Obviously there is a reinforcing and a
cross-feeding. Many people now pay more attention to style, structure
and modularity in the introductory programming courses than they did
10 or 15 years ago. So certainly there is some reinforcement in both
directions. We don't see that software engineering, as we envision it,
will have a large following at the undergraduate level.

SLIDE 9. TOPICS IN A FUTURE MSE CURRICULUM

• LOGICAL AND MATHEMATICAL FOUNDATIONS
• FORMAL REASONING
• ANALYSIS AND SYNTHESIS
• ALTERNATIVE PARADIGMS

• ABSTRACTIONIVERI FICATION

• SYSTEM PARAMETERS/PHYSICAL REALITIES
• CARBON BASED FOUNDATIONS (PETER FREEMAN)

• ECONOMIC FACTS/MODELSIIMPACTS
• PLANNINGITRACKING/COORDINATION
• LEGAUSOCIAUPOLITICAL ISSUES

• PRINCIPLES VS. TECHNIQUES
• LONGEVITY OF INFORMATION CONTENT

We talked about what the topics might be in a future MSE curriculum
[Slide 9], and we came up with three areas: logical and mathematical
foundations, formal reasoning, analysis and synthesis (with "and"
emphasized). Clearly more work needs to be done here, but we hope it
pOints the way. Let's allow people to build things, design them and make
mistakes. Alternative paradigms are important. It is not clear what role
logic programming or AI workstations will play or how they will impact
software engineers. But software engineers should have those models
in mind and know more than just how to do something in Pascal or Ada.

www.manaraa.com

408 Report of the Future SE Curriculum Working Group

The central role is the dual role of abstraction and verification. We
grappled a while with how to characterize the things that people need to
know about the architecture of systems, how machines operate and
what the physical realities are of transfer rates to external storage
devices, transmission rates over telecommunication lines, CPU speeds
and things of that nature. Clearly, this is an area of knowledge that the
software engineer needs to have.

The second area Peter Freeman termed for us "carbon-based
foundations," in contrast to calling this "intellectual foundations" which
we thought sounded a little snobbish. These are basically soft areas.
People need to know economic facts, models and the economic impacts
of the systems they are building. They need to know about planning,
tracking and coordination. Increasingly, if we see the software engineer
as the systems engineer, then they have to know about the legal, social
and political issues involved with their systems.

We, like the other working groups, talked quite a bit about principles
versus techniques and tried to address them in a couple of ways. One
approach is to ask, "What is the longevity of the information content of
the material being presented?" If you are talking about a particular
design technique which seems to be a passing fad, it may not be worth
spending a lot of time on. On the other hand, if there are fundamental
principles embodied that will persist over time, then it's useful to use that
technique to illustrate the principles. Another way in which we ad
dressed this issue was to think about the idea of apprenticeship and the
teaching hospital, where people can actually get involved in projects as
part of the program.

www.manaraa.com

Report of the Future SE Curriculum Working Group

SLIDE 10. ADDITIONAL CURRICULAR ISSUES

• SYSTEM BUILDING ISSUES
• DESIGN (AT SOME LEVEL)

• MANAGEMENT OF COMPONENTS
• SCHEDULING OF BUILDS
• MEASUREMENT OF QUALITY AND PROGRESS

• MODIFIABILITY

• 2 YEAR PROGRAMS
• PROFESSIONAL CERTIFICATION

• COMING IN 5 YEARS (?)

• TIED TO TESTING EXPERIENCE AS WELL AS MSE CON
TENT

• PHD IN SOFTWARE ENGINEERING
• COMPUTER SCIENCE DEPARTMENTS FAIL TO ACCEPT
SOFTWARE ENGINEERING DISSERTATIONS

• FAILURE RETARDS PROGRESS IN SOFTWARE EN
GINEERING

• WILL FORCE A SPLIT BETWEEN COMPUTER SCIENCE
AND SOFTWARE ENGINEERING

409

We identified a set of issues caiied "system building issues" [Slide 10].
The list is incomplete and needs more work. We said that design at
some level will continue to be an important component of what software
engineers do. What we have in mind is that in 10 years we may be
writing executable speCifications, and traditional design, as we know it,
may disappear. The level of abstraction and the mechanism of expres
sion may be different, but it is nevertheless design of artifacts. The
management of components means, "How do you deal with systems
with a thousand or ten thousand components? How do you put that
together? How do you schedule builds releases? How do you measure
quality and progress?" We are concerned with constant evolution and
modifiability of systems. Obviously, this is an incomplete list.

We think that the MSE is a two year program. We didn't try to talk about

packaging of modules or which module comes first or later, but rather
concentrated more on the issues, as I have indicated.

We believe that professional certification is coming, like it or not. People
speculated a two-year time frame, which is being driven by concerns for
legal liability as much as anything else. Certification might be tied to

www.manaraa.com

410 Report of the Future SE Curriculum Working Group

some period of experience in the form of an examination after leaving
the MSE program. C.PA's, doctors and lawyers have professional cer
tification which involves their initial training, some experience and then a
competency examination which follows the experience. This is where
we talked about the internship and said, "Wouldn't it be nice if these
people went out under someone's guidance and worked for a year or
two?" This appears unrealistic even for 10 years from now.

Our last observation was about PhD programs. The failure of computer
science departments to accept software engineering topics for disser
tations is currently retarding progress in software engineering and will,
as much as anything, force the split between computer science and
software engineering. Yesterday we presented a conclusion that there
will be a split between computer science and software engineering in 10
or maybe 15 years. We don't know the exact time frame for that, but we
were much influenced by Fred Brooks' analogy of what happened to
chemistry and chemical engineering 60 years ago. We feel that com

puting is in much the same pOSition, 60 years later, as what happened
when the split between chemistry and chemical engineering occurred.

That is the end of the slides. We are open for comments and discus
sion.

Nico Habermann: I'm not so concerned about whether computer
science and software engineering have split or not. Time will show.
What does concern me is the statement that computer science depart
ments fail to accept software engineering dissertations. Is there real
evidence of that? I would say that CMU does a fairly honest job in trying
to do justice to software engineering. If you look at the record of our
PhD students, you can notice that we have had several good systems
theses that may not have focused directly on software engine ring topics,
but have a large software engineering component to them.

Dick Fairley: Wang Institute has proposed a PhD program and one of
the topics we have talked about is the dissertation areas for software
engineers. We think that theoretical advances in the field are always
welcomed. The building of an Emacs or a Scribe is also a legitimate

www.manaraa.com

Report of the Future SE Curriculum Working Group 411

software engineering dissertation activity. Conducting experimental
studies, perhaps involving human subjects, or the compilation of sig
nificant case studies might be acceptable. There is a chicken and egg
problem here. A lot of these kinds of ideas don't get proposed in com
puter science departments because of the nature of the faculty and the
environment. It never occurs to people that these are legitimate kinds of
things to do in the software field.

Bill Wulf: There are a couple of comments here. The first one is that in
some sense, schools like Carnegie Mellon, Stanford and MIT probably
can accept this kind of dissertation with somewhat more impunity than
other schools that are in the process of trying to establish their reputa
tions. You are right. We don't have a history of dOing this sort of thing
and we have a more traditional view of what constitutes a PhD thesis.

The second comment is that even at those three schools, I see an in
creasing trend not to accept a significant piece of systems work as a
thesis. I think it is an unfortunate phenomenon but a phenomenon that
is true. I can point to specific examples, but I don't think that it would
help.

Nlco Habermann: I do not agree with the second comment. I believe
that we should fight this. We should not let it go. It is absolutely wrong.
If I get requests from other places to support them for that type of thesis,
I will do the best that I can to convince the dean or the university ad
ministration of the validity of this type of work. Universities in general
and the people here who are representing these universities should do
the same thing. There is no reason to let go so easily.

Peter Freeman: One of the strongest things, Nico, that the three to six
top schools can do to help those of us in schools whose reputations are
not quite as illustrious but are trying to improve them is to support us by
writing a letter. It is even better when you continue to accept those

kinds of theses so we don't need to have letters. All we need to con
vince our faculty is to say, "Hey, look, CMU is accepting theses like
this," or, "Stanford is accepting theses like this." I don't know of the
cases that Bill is thinking of, but if those schools are moving away from
this, then it poses a real problem for us.

www.manaraa.com

412 Report of the Future SE Curriculum Working Group

Bill McKeeman: The business of building an artifact - for example,
the Golden Gate Bridge - is no thesis unless you find an advance of
knowledge in it. That is the definition of a thesis. If the Carnegie Mellon
students were pressed to take their wonderful artifact and find some
advance of technology and call that their thesis, as opposed to the ar
tifact itself, I would consider that a waste of their time. I would like us not
to have to do that here.

The other thing that you people in the top universities can do to help is
to hire people who write theses like that. I don't see that happening.

Nico Habermann: I would say point them out to us, because it is ex
tremely difficult to find systems people to come to universities. We have
a very hard time finding qualified systems people.

Susan Gerhart: Maybe an even better test would be when these dis
sertations, wherever they are produced, actually use some software en
gineering methods like technical reviews or Jackson Design or
whatever, and you can report on the experiences as well as the artifact
and the technology.

Dick Thayer: You've kind of answered the question already, Dick Fair
ley, in that if there are faculty in the school that are software engineers,
they will take software engineering dissertations. If you don't have this
kind of faculty, you are not going to get a software engineering disser
tation. That is true of any field. It is a self-solving problem if you solve
the faculty problem.

Dick Fairley: To some extent. If you are the single software engineer
in a theoretical department, you are not going to get very far.

Dick Thayer: Then you move.

Gordon Bradley: Traditionally, one accreditation issue is the differen
tiation between the PhD and the Doctor of Engineering. The U.S.
Naval Postgraduate School in Monterey has been examining one of its
departments that offers PhDs and wants to simultaneously offer a Doc
tor of Engineering. The Doctor of Engineering course work is exactly

www.manaraa.com

Report of the Future SE Curriculum Working Group 413

the same. The Doctor of Engineering does not have to be an advance
of knowledge but can represent a contribution to the state of the prac
tice. If you want to offer such a degree you ought to call it a Doctor of
Engineering.

There is quite an issue of whether we are prepared methodologically or
ethically to do experiments on human subjects. The methodology of our
field has not included the study of human beings. The ethical issues

associated with experimentation with human beings are significant. You
need to worry about that one a little more.

Dick Fairley: I think there are people in our field who are qualified and
know how to deal with the ethical and methodological issues of human
experiments. They would do more of this kind of thesis if it were more
readily accepted.

Gordon Bradley: The reviews by psychologists of that literature have
been critical of the methodologies.

Dick Fairley: That indicates we need to improve our methodology.

We have been through quite a discussion at Wang Institute about the
Doctor of Engineering versus the PhD and how the student and society
are better served. Should we have two programs? Should there be a
single program? After a lot of discussion, we decided that the PhD is
the appropriate degree. First, because we believe it is a legitimate use
of the degree as it is used across many fields. Second, the student is
better served. Industry and universities do not regard the Doctor of
Engineering very well. It is not very well-received by either camp. It is
regarded as sort of halfway to the PhD, but for some reason the student
didn't get there. I don't think that the student is well-served and I am not
sure that society is well served by the Doctor of Engineering degree. We
decided that it will be a PhD program, and the shape of that degree is
still taking form.

Gordon Bradley: Why won't you accept the definition of a PhD? When
someone says you have a PhD, it means that you have made an ad
vance of knowledge in the field. It would seem to me that you want the

www.manaraa.com

414 Report of the Future SE Curriculum Working Group

best of both. You want the title of PhD, but you don't want to accept the
standard definition of a theoretical advance of knowledge in the field.

Dick Fairley: No. It is an advance of knowledge, but not necessarily a
theoretical advance. Advance of knowledge is at the core of all of this.

Gordon Bradley: Multics generated three PhD theses at MIT. There is
no problem if there is something unique about the exemplary artifacts.

Dick Fairley: I take exception to that. I think there is a problem in
getting artifacts accepted that incorporate advances of knowledge in
many computer science departments.

Gordon Bradley: I'm with Nico. I don't see the problem.

Nlco Habermann: We should not give up and say, "Fine. Let it be."

Dick Fairley: Well, as one who fought that battle for 15 years I was
ready to give up and go somewhere else.

Gordon Bradley: Well, the other question that I have is about basing a
PhD program on top of a terminal Master's program. That seems to me
to be a problem. If you run a terminal Master's program first and the
student goes into a PhD, that almost is by definition a Doctor of En
gineering.

Dick Fairley: There are some problems to be worked out there. The
PhD requires course work beyond what we envision as the core of our
Master's program. Additional course work beyond the Master's is re
quired to get into the PhD Clearly, there are some interfacing problems.

Gordon Bradley: I taught at Yale. There a student could not continue
on from the terminal Master's into the PhD program.

Mary Shaw: I support wholeheartedly the acceptance of engineering
theses in which the primary work of the thesis is a piece of engineering.
I thought I heard Bill McKeeman say that simply producing that work
should be accepted as the thesis. I take exception to that. I don't
believe that at the doctoral level, simple virtuoso performance is ade-

www.manaraa.com

Report of the Future SE Curriculum Working Group 415

quate for the granting of the degree. I believe that the degree needs to
transmit knowledge in some way by exposing an interesting system
structure or by exposing the insight that led to that system's structure.
Somehow the combination of the artifact and the supporting materials
must convey to the observer the advance of knowledge that lies in the
system. I would not accept the virtuoso performance.

Bill McKeeman: Let me speak to that. The issue is what the evalua
tion resides on. If the exemplar artifact (and its utility) shows great scien
tific creativity and stands by itself, I do think that's enough. I don't think

a student should be forced then to dig in and try to dig out something
which will advance knowledge. I run into trouble with this because that
is not the way a PhD is usually defined. I think an exemplary artifact,
well done, showing creativity, is in fact acceptable.

Mary Shaw: I believe that it needs to be coupled with a display of the
artifact that allows the observer to get the knowledge out of it.

Bill McKeeman: Absolutely. The presentation is critical.

Gordon Bradley: The methodology of the field does not have a part
that includes aesthetics like an architectural program or a music
program. We do not have as part of our methodology the aesthetics
that will allow judgment to be made about whether something is good or
bad.

Dick Fairley: Only those in a given field are qualified to judge what
constitutes an advancement of knowledge in that field.

Gordon Bradley: I think that that is absolutely right.

Dick Fairley: The software engineering community can add the com
ponent of aesthetics to our evaluation.

Vic Basili: I just wanted to argue that I don't see any problem with
those dissertation topics for a PhD in computer science. They have to
be coupled. You don't go look at the exemplary artifact afterwards and
say, "Is there something I can take out?" If you do it in the first place

www.manaraa.com

416 Report of the Future SE Curriculum Working Group

with some goal in mind, then you prove what you were trying to prove
and you've shown it. If you make the thesis show these things, then this
becomes a different process. It's like trying to accomplish something by
using ideal engineering techniques and measures to evaluate and show
that you have succeeded in doing what you did. It is then a dissertation
topic.

Bill Wulf: Students are never going to believe that these are accept-.
able thesis topics unless they see that promotion and tenure decisions
are made on exactly the same basis.

Gary Ford: You said two things that had implications for undergraduate
education which I think are important to the SEI Project. Number one:
You said something about the medical model and there being lots of
people who support the software engineer, who aren't software en
gineers, but maybe software technologists. Is that a legitimate concern?
Is there a place for it in undergraduate education?

Dick Fairley: We didn't address that issue. My personal reaction is
that I am a little concerned about educating undergraduates as tech
nologists.

Gary Ford: If they are not software engineers, what are they and what
educational background do they have?

The second issue is that the set of futures you put up there seems to be
larger than the current set of things we are talking about in the cur
riculum. Does that imply that this material replaces what is in the cur
rent curriculum or is some of it that is now Master's level software en
gineering going to be pushed down into an undergraduate program in
10 years?

Dick Fairley: Well, it may be pushed down or it may be that the tech
nology will advance to the point that some of the issues we spend a lot
of time worrying about now will no longer be as important. We will have
other issues to worry about, but perhaps they will be at a higher level of
abstraction and with more powerful tools. I am not sure that things are
going to get pushed down to any great extent.

www.manaraa.com

Report of the Future SE Curriculum Working Group 417

Joe Newcomer: I have a question related to Gary's first comment.
There are a number of professions in which the number of professionals
available to fill the need simply aren't there. Instead, you have a set of
paraprofessionals. The legal, medical and librarian areas are ones that
pop to mind instantly. They tend to have two year programs taught at
junior colleges. It seems to me that we might be headed in that direc
tion. I can't comment on whether that's a good or bad direction. I am
simply observing that that trend is going to be there, as soon as we start
having enough of a body of knowledge to be teaching paraprofessional
software engineers.

Dick Fairley: I'm not prepared to say whether that is good or bad. But
it would seem to be an obvious trend that as the field becomes better
defined and specializations emerge, we will understand how to coor
dinate and work those specialties together.

Gordon Bradley: How do you deal with the issue that most people who
are working with computers without a background in computer science
have begun to declare themselves software engineers? If you pick up
the newspaper there are lots of people hiring software engineers all over
the country. We only graduate 100 and they are hiring 1,000 a year.
There are 900 other people who have declared themselves software
engineers. The term is going to be quickly debased.

Dick Fairley: A certification program might have a good effect.

From the Floor: But it may be too late. The horse may be out of the
barn. It's almost too late for computer science.

Ed Smith: Well, you had barbers calling themselves dentists 40 or 50
years ago.

Dick Thayer: I teach software engineering at the undergraduate level.
How can you argue that there is no software engineering at this level
when electrical engineers are primarily undergraduates? There is al
ways a level of education and information that is at the undergraduate
level. We have a two semester senior-level sequence in software en
gineering as a capstone course for students getting an undergraduate

www.manaraa.com

418 Report of the Future SE Curriculum Working Group

degree in computer science. Certainly there is an important component
that should be there. But this is a much larger discussion about educa
tional philosophy than I am prepared to get into right now.

AI Pietrasanta: My comment is related to a couple concerning the
trend toward technicians, because it is my belief that we are headed
toward a dramatically different software development process than we
have today. Hopefully that process will have less people involved to
produce the same end result because we will have achieved a better
productivity level. One way to get to that productivity level is by a more
automated process than we have today. Most profoundly, I think the
pattern of people involved in the process is going to change. Today, we
have a dominant number of professionals, with relatively equal levels in
salaries, supported by a minimal number of technicians. I think that mix
is going to change into a single professional job of software engineer or
systems engineer doing the truly creative work and management. That
person is going to be supported with a collection of technicians, to keep
the process running, keep the tools running, keep the measurements
going, and keep the documentation coming out. In answer to the ques
tion, I think all those technicians we are talking about will come from an
associate or two year program. For the mass of professionals we have
today, there is a mass of programs. We are headed toward super
professionals and technicians. Our planning ought to address that radi
cal departure in terms of personnel, planning and so forth.

Peter Freeman: How is that different from the super programmer con
cept?

AI Pietrasanta: I think that it is the super programmer carried to an nth
degree across the entire project.

Dick Fairley: I'd certainly like to thank all of you for your participation in
the workshop. It has been a valuable experience for me, for many of
you, and for the SEI. I think the proceedings are going to be a valuable
contribution to software engineering education.

www.manaraa.com

Section IV

Appendix

www.manaraa.com

Appendix 1

Proposed Curriculum for a
Master of Software Engineering (MSE)

Original Draft Prepared by James Collofello
Arizona State University

An Academic Affiliate of the SEI

Edited by James E. Tomayko
Software Engineering Institute

Editor's Note: This appendix contains the version of the proposed
Master's in Software Engineering curriculum plan distributed to the
conference participants in advance of the workshop. The approach to
SEi curriculum development has been extensively revised based on
the thoughts contained in the contributed papers and the results of
discussions during the meeting.

Referees: Dan Burton, Clyde Chittister, Gary Ford, Norm Gibbs, Nico
Habermann, Albert Johnson, John Manley, Dick Martin, Mary Shaw,
Nelson Weiderman.

Preliminary Considerations

Defining the Product: What Is a Software Engineer?

One goal of the Software Engineering Institute (SEI) is to help raise the
quality of software engineering practice. A means of doing this is the
creation of a model curriculum for the education of software engineers
that would be adaptable to implementation in academia, industry, and
the military. Designing such a curriculum is difficult because the
product, "software engineers," and the techniques, "software
engineering," are not well defined or understood. The SEI is making an
attempt at achieving a better sense of what software engineering is, but
the field is still far from staked out. 1 that summarizes past and current
thought on the matter.) Still, some attributes of software engineers and
software engineering can be stated to serve as a basis for beginning a
curriculum design. These include the ability to:

1See articles by Albert Johnson, "Experts Disagree on Meaning of Software
Engineering," Bridge, Vol. I, No.1, June-July 1986 and "Software Engineering Combines
Management and Technical Skills," Bridge, Vol I., No.2, August-September 1986.

www.manaraa.com

Proposed Curriculum for a Master of Software Engineering

• Specify, design, code, test, and modify software systems
utilizing state-of-the-art software engineering technology.

• Plan, organize, estimate costs, schedule, and track a
software development or modification effort at the project
leader level.

• Define and ensure software quality through the develop
ment and use of software metrics, standards, review
procedures and configuration management approaches.

• Work with and/or manage computer science specialists,
programmers, and other engineers in the development and
modification of complex systems.

• Assess advances in software engineering, apply them to
projects, and evaluate their effectiveness.

• Serve as a knowledgeable participant in system design ac
tivities involving allocation of functions to software versus
other system components.

Science and Engineering in the Context of
Software Development

421

An important distinction alluded to in the list of attributes is that between
software science and software engineering. Computer science is a true
"science of the artificiaL" It is the study of the nature of an artifact.
Software aspects of computer science should be applicable to software
engineering much like physics is applicable to mechanical engineering.
Still, it remains unclear how science and engineering interact in software
development. Although it is generally acknowledged that a purely com
puter science background is insufficient for immediate productivity as a
software engineer (existing MSE programs at Seattle University and the
Wang Institute require actual industry experience in addition to an ap
propriate undergraduate degree for admission), it is still an open ques
tion as to what parts of software science are best needed as a foun
dation of the education of software engineers. (Later versions of this
curriculum will attempt to address this point in more detaiL)

Education VS. Training

In order to develop a graduate curriculum in software engineering, it is
necessary to differentiate between software engineering education and

www.manaraa.com

422 Proposed Curriculum for a Master of Software Engineering

software engineering training and to determine the degree of each
which is to be reflected in the curriculum.2 The discipline can be divided
into three interdependent layers:

• Principles and concepts for cost-effective development and
modification of high quality software.

• Methodologies and techniques based on these principles
and concepts.

• Tools supporting methodologies and techniques and how to
use them.

Level 1 (Principles and Concepts of Software Engineering)
represents that part of software engineering that is fundamental to the
discipline. These principles and concepts, although still evolving, are
relatively invariant and form a common thread through all of the various
methodologies and techniques. An understanding and appreciation of
these principles and concepts lies at the heart of software engineering
education.

Level 2 (Methodologies and Techniques) represents that part of
software engineering which actually provides the mechanisms for or
derly software development and evolution in accordance with the
software engineering principles and concepts. New methodologies and
techniques are appearing at a rate faster than they can be effectively
evaluated. This level can thus be viewed from both an educational and
a training perspective. Step-by-step instruction of a contemporary
methodology or technique is training. Yet a careful analysis of the
strengths and weaknesses of current methodologies and techniques as
well as guidelines and criteria for selecting appropriate methodologies
and techniques for a particular application is educational.

Level 3 (Tools) represents that part of software engineering which
automates methodologies or techniques. This is the most rapidly
changing portion of the discipline. Instruction in current tool utilization

2The SEI has decided to concentrate on development of a master's level curriculum as
a logical starting place. Plans include exploration of both undergraduate and doctoral
level curricula at a later date.

www.manaraa.com

Proposed Curriculum for a Master of Software Engineering 423

can be viewed as training, while an awareness of tool existence and
capabilities, as well as principles of tool development, can be regarded
as education.

A graduate level software engineering curriculum must focus heavily on
educational issues rather than training issues. This implies a heavy
concentration on levels 1 and 2 as described above. However, due to
the practical nature of this program, some "hands on" experience with
selected methodologies and tools must also be provided. This can most
naturally be handled through a significant software development or
modification project in which all candidates for the degree must par
ticipate. Representative state-of-the-art software tools must be avail
able and easily accessible for utilization in the projects.

Design of the MSE Curriculum

Prerequisites

Deciding what requirements should be met for entrance into an MSE
program is made difficult both because of the lack of an adequate defini
tion of the product and a full understanding of the role of science. More
difficulties are present because of the intent to offer the curriculum for
education and training in industry. Many practicing programmers,
software engineers, quality assurance personnel and project managers
have sketchy or no academic background in computer science. By re
quiring industry experience for admission, Seattle and Wang try to
recruit students with something in common. Seattle also makes avail
able courses in basic computer science to assist students in acquiring
sufficient knowledge to enter the core coursework. Those courses do
not count toward the degree.

Arguments have been made within the SEI that the statement of prere
quisites should be developed after rather than before the statement of
the curriculum. That approach is accepted for this version, so no
description of prerequisites is included. However, it is anticipated the the
prerequisite structure will consist of scientific and mathematical com
ponents coupled with liberal arts skills related to software production
and management, and an explicit position on the role of work ex-

www.manaraa.com

424 Proposed Curriculum for a Master of Software Engineering

perience vis-a-vis academic preparation. Diagnostic exams are one
proposal for matching students to the proper level of the curriculum.

Structural Outline

Currently the curriculum is structured on a modular basis, each module
roughly equivalent to one or two semester hours or one work week in an
industrial setting. Although some modules serve as prerequisites to
others, they can be packaged in many different ways to satisfy the
needs of DoD, industry, and educational institutions. For example,
schools interested in forming traditional courses out of the modules
could combine them and perhaps make better use of faculty expertise
by assigning faculty by module rather than by course. Industrial or
ganizations could schedule and space out modules relative to peak
production periods and heavy vacation months. Although it is expected
that some of the academic affiliates of the SEI will install the entire cur
riculum, other institutions and companies would use modules in existing
training programs and courses, or in new offerings inspired by the
availability of innovative materials.

Ideally, educational institutions would have an MSE degree program
consisting of about 33 semester credits, of which 6 will be devoted to
the project. An organization offering the MSE degree program will have
to make available relevant electives in the areas of computer science,
electrical engineering, and management science to support the
program. Also, appropriate state-of-the-art software engineering tools
must be available (perhaps through SEI via networks) to complement
and support the MSE courses and projects.

The proposed MSE curriculum consists of four parts:

1. Software Engineering Core: modules which are deemed necessary
for all software engineers regardless of their specialization. The bulk of
the core consists of basic principles and concepts of software engineer
ing. Due to the rapid changes in the practice of software engineering
expected over the next decades, this is a true core in that it is the only
part of the curriculum immune to the whims of technology. By con
centrating on basic science and engineering principles, the graduates of

www.manaraa.com

Proposed Curriculum for a Master of Software Engineering 425

the core can be expected to adapt to new environments more effectively
than those taught in a technology-dominant curriculum.

2. Software Engineering Specialization: modules which build upon
the core and add depth to a specialization area. Currently software en
gineers are most pervasively involved in technical and managerial posi
tions. However, due to the nature of software development, premature
specialization in either of these areas would be a mistake. For students
who have a definite leaning in one direction or another, sufficient
modules will exist to build on an area of interest and to later return for
continuing education in other specializations. As presented here, a tech
nical specialization enables a student to acquire more in depth
knowledge of development and modification methodologies, techniques,
and tools. The managerial specialization provides the additional project
management information necessary to more effectively lead a software
project.

3. Electives: those courses normally found in a graduate computer
science program and, in addition, courses in management science,
psychology, and electrical engineering which can provide additional
depth to software engineering specialization areas. Computer science
electives particularly relevant to software engineering include graphics,
computing system architectures, operating systems, distributed comput
ing, compiler construction, real-time system design, computer security
and privacy, data base systems, communications, and expert systems.

4. Software Engineering Project: the project is normally expected to
be of a one academic year duration and involve a significant software
development and or modification effort involving teams ot degree can
didates. The project is the vehicle whereby students can apply their
newly acquired software engineering skills. An individual student's
tasks on the project should be mapped to correlate closely with their
chosen specialization area. State-ot-the art software engineering tools
must also be available for students to utilize on the project. Projects
should ideally be for the production of "real" software in that there is a
customer requesting the product and that the product, if successfully
developed, will be used. The SEI Education Division plans to issue a

www.manaraa.com

426 Proposed Curriculum for a Master of Software Engineering

guide to the preparation of suitable projects as a service to prospective
instructors. At what point the student should begin working on the
project is still undetermined.

The proportion of the curriculum devoted to each segment ~f the design
is impossible to determine until more complete module descriptions and
a better understanding of objectives are developed. Roughly a third to
nearly half of the curriculum will be core, about a fifth spent on the
project, and the remainder used for closely related specialization
modules and electives.

Module Descriptions

The SEI Education Division Graduate Curriculum Project will produce 40
to 50 modules. A module is a unit of the curriculum embodied by a
document of 20 to 30 pages containing:

• Title

• Capsule description: a short (30 words) description of the
content of the module, similar to a college catalog entry .

• Philosophy: a brief explanation of why the module exists
and its relationship to other modules.

• Behavioral objectives: specific statements of measurable
knowledge and skills students will obtain by completing the
module.

• Prerequisites: defined in terms of other modules, or in
terms of knowledge obtained in undergraduate coursework.

• Syllabus: a summary outline of the content.

• Detailed outline: details of the topics to be covered, indicat
ing the level of coverage.

• Annotated bibliography: a bibliography of the most per
tinent papers in the literature, annotated to indicate which
papers cover which parts of the module material, which
papers are surveys and which provide deeper coverage,
and which papers are most readable by students.

• Textbooks: a list of textbooks that offer coverage of the
module material. In many cases this will be an empty list
until an SEI monograph targeted at the module is
published.

• Teaching support: where appropriate, exercises or project
suggestions to aid the instructor.

www.manaraa.com

Proposed Curriculum for a Master of Software Engineering 427

- Software support: where appropriate, brief descriptions of
software products that can support the module, including
suggestions for how they may be used.

Each of the modules in this section is identified with a prefix and a num
ber. The prefixes are:

-TECH

-MGMT
The numbers have three digits xyz where x corresponds to the place of
the course in the curriculum (1 = core, 2 = specialty), y corresponds to
the topic within the prefix area concentration, and z corresponds to the
course within the topic area. For example, TECH 131 Software
Generation is a technical course in the core topic of software design
and implementation concepts, and the first course in that topic.

Note that the curriculum is still in a primitive state of development, and
that prerequisites, specific topics, and balance among modules can only
be established after objectives are defined.

Core Modules

TECH100

TECH101

TECH111

Overview of Software Engineering

Presentation of the history of the development of
software engineering, its raison d'etre, a description
of the behaviors of a software engineer, purpose of
the curriculum, and (where applicable) an introduc
tion to the support tools and resources available at
the teaching site.

Communication Techniques for Software
Engineers

Practice of writing and oral presentation techniques
to prepare students for creating technical docu
ments and reports used in software engineering,
such as requirements specifications, user documen
tation, and design reviews. Emphasis on aware
ness of good communication principles that can be
applied in the curriculum and on the job.

Software Interface Engineering

The study of principles relating to interaction among
computers and computers and humans. Concentra-

www.manaraa.com

428

TECH121

TECH131

TECH132

TECH133

TECH141

TECH151

Proposed Curriculum for a Master of Software Engineering

tion on human factors and the evaluation of inter
face technology directed at man/machine com
munication. Hardware/software interfaces between
computers in embedded systems and networks, as
well as interfaces to knowledge bases.

Software Requirements Engineering

Survey of the techniques of software requirements
specification, including formal and informal methods
such as rapid prototyping, modeling, and simulation.
Defining performance and quality requirements.

Software Generation

Principles and theories of software design, including
structuring, object orientation, data flow, filters,
pipes, reusability, and automatic code generation.

Implementation Considerations

Techniques of implementing software designs within
the constraints of languages and environments,
such as special considerations when using lan
guages without inherent structuring (assembly lan
guages, COBOL) and methods for making best use
of languages designed for engineering (Ada TM3).

Tool Building

Concepts of tool construction and utilization. Survey
of general purpose tools and specification and con
struction of project-specific tools.

Software Correctness Assessment

The analysis of correctness and safety issues in
various types of software systems, such as real
time software, embedded software, expert systems,
networks, and data processing. Also, a survey of
approaches for reasoning about and certifying
software correctness, including testing, program
verification, walkthroughs/inspections, and simula
tion.

Engineering Software Evolution

Study of the techniques of controlling the evolution
of software systems relating to the evaluation of the

3Ada is a registered trademark of the U. S. Department of Defense.

www.manaraa.com

Proposed Curriculum for a Master of Software Engineering 429

TECH161

MGMT111

MGMT121

MGMT131

impact of proposed software changes, maintaining
software integrity, and software configuration
management techniques and tools.

Software Quality Factors

Identification of software quality factors and metrics,
ways of evaluating metrics, and data collection and
analysis techniques.

Project Management

An introduction to the principles of software
development project management, including overall
development plans, software quality assurance
plans, work breakdown structures, PERT charts,
GANTT charts, life cycle models, unit development
folders, and earned value concepts.

Project Organizational Structures

Methodology of organizing personnel for project
development and evolution through study of human
factors, chief programmer teams, matrix manage
ment, functional approaches, and organizational be
havior.

Principles of Cost Estimation and Scheduling

Evolution of estimating economic factors of software
development from mythical man month ideas to cur
rent cost estimation and scheduling techniques and
tools.

Specialty Modules

TECH211

TECH221

Human Interface Design

Assessment of user needs and capabilities, analysis
of current approaches, and guidelines for selection
of an appropriate interface.

Software Requirements Specification Models,
Techniques and Tools

Analysis of requirements specification models, tech
niques, and tools, evaluation of the strengths and
weaknesses of approaches, and guidelines for
selection of techniques.

www.manaraa.com

430

TECH222

TECH231

TECH232

TECH233

TECH234

TECH235

TECH241

TECH242

TECH243

Proposed Curriculum for a Master of Software Engineering

Software Prototyping

Study of prototyping as a specification tool and
review of existing techniques.

Design Methodologies and Tools

Design and utilization of reusable software, analysis
of design methodologies and tools, and guidelines
for selection of a methodology.

Design of High Reliability Systems

Principles and techniques of fault-tolerant design in
which fault tolerance is software-centered.

Engineering Software for Applications in Artifi
cial Intelligence

Analysis of special considerations in the develop
ment of software for knowledge-based systems, use
of list processing and logic-oriented implementation
languages, special development tools, and handling
self-evolving systems.

Real·time System Development

Engineering software for real-time and/or embedded
systems, including sizing and timing constraints,
redundancy management, hardware environments,
and interaction with analog devices.

Firmware

Special considerations in the development of
firmware.

Principles of Testing

Fundamental consideration of levels of testing, test
plans, test management, documentation of test
cases, black boxlwhite box testing approaches, and
unit testing.

Integration and System Testing

Higher level construction of systems, integration
strategies, integration test plans, testing real-time
systems, testing embedded software, analysis of in
tegration and system testing techniques and tools,
and guidelines for selecting among approaches.

Program Verification

Proof of correctness, limitations, and analysis of
tools.

www.manaraa.com

Proposed Curriculum for a Master of Software Engineering 431

TECH244

TECH245

TECH251

TECH261

TECH262

TECH263

MGMT211

MGMT212

MGMT221

MGMT231

Software Review Technologies

Walkthroughs, inspections, human factors, check
lists, organization of review groups, documenting
review results, automated review techniques.

Software Safety

Specification of software safety requirements,
generating safe systems, validation of software
safety requirements.

Software Configuration Management Tech
niques and Tools

Analysis of SCM techniques and tools, strengths
and weaknesses of techniques and tools, guidelines
for selection of techniques and tools.

Reliability Metrics

Current reliability models, error seeding.

Maintainability Metrics

Complexity metrics, modifiability metrics, testability
metrics, maintainability assessment techniques.

Management Metrics

Productivity metrics, cost metrics, scheduling
metrics, size metrics.

Software Engineering Economics

Risk assessment, cost/benefit analysis, trade-off
studies.

Software Contracting

Legal issues, cost estimating applicable to contract
ing, quality assurance applied to contracting, finan
cial management process, life cycle of contracted
software, legal issues relating to erroneous
software.

Management of Project Personnel

Human factors, evaluations, motivation issues.

Cost Estimation and Scheduling Techniques
and Tools

Analysis of approaches, survey of tools, guidelines
for selection of approaches.

www.manaraa.com

Appendix 2

Educational Needs of the Software Community

Gary Ford
Software Engineering Institute

Preface

The importance of education in an industrialized and democratic society
is generally accepted. It is nearly impossible to identify specific aspects
of a person's education that are responsible for particular contributions
that that person makes to society; instead we simply agree that educa
tion is necessary.

Nevertheless, for many broad classes of activities, we can identify some
of the necessary education and training. For example, most profes
sional activities require a background including natural language skills
(reading, writing) and quantitative skills (measurement, arithmetic).
Specialized activities may require education in the arts, social sciences,
or physical sciences.

In this paper we will examine the class of activities informally called
software development, identify some education and training needed by
persons who perform these activities, and then suggest ways to meet
the education needs. The distinction between education and training is
important. Education provides the fundamentals upon which training
can be based. Training usually has a short-term, well defined goal, and
may concentrate on the performance of a particular process. Education
has longer term, less well defined goals, and must also include reason

ing about processes rather than just performance. We will concentrate
on education almost exclusively in this discussion.

The Shortage of Software Professionals

It is difficult to predict accurately the growth of the software industry and
the growing need of skilled software professionals. However, several
studies have been done that agree roughly on the growth of the in
dustry. Together, they can help define the scope of the problem.

www.manaraa.com

Educational Needs of the Software Community 433

As an example, consider the software needed to support NASA's
manned spaceflight programs. The growth of the size of the software,
measured in object instructions, has grown from approximately one mil
lion for Project Mercury to 40 million for the Space Shuttle [see Stokes,
1970; Reifer, 1977]. This represents a growth rate of 20% to 25% per
year. Similar growth has been seen in the onboard software in military
avionics systems. One survey estimated a 24% annual increase in the
total number of computers, indicating perhaps a comparable overall
growth rate in software needs [see Phister, 1979].

Similar studies of software personnel indicate growth rates of 3% to 4%
[see Dolatta, 1976; Morrisey and Wu, 1979]. Most large producers of
software indicate that they are experiencing difficulty in hiring enough
software personnel, although they cannot provide a precise measure of
the shortfall.

The productivity of software producers is also increasing, but again, not
at a rate comparable to the growth of the size of and need for software
systems. The same studies cited above indicate a 3% to 6% growth
rate in productivity. Extrapolation of these growth rates would indicate
that sometime in the 1990s there will be such a shortage that many
software products will simply not be produced, and the ones that are will
be attempted with insufficient personnel, resulting in very low quality.

The ramifications of this problem for the Department of Defense
software contractor community are serious. With the increasing reliance
on computers and software in nearly all weapons systems, communica
tions systems, and command operations, there is the potential that most
new systems will not be able to be developed.

Education as Part of the Solution

The shortage of skilled _ software professionals cannot be solved by
simply increasing the number of persons in the profession. The situa
tion _tsan-alogous to the shortage of telephone operators early in this
century. The growth in the number of telephones and the number of
calls being made was known, so the growth in the number of operators
needed to place those calls was predictable. The prediction indicated

www.manaraa.com

434 Educational Needs of the Software Community

that within a few years, every man, woman, and child in the United
States would have to be employed as a telephone operator. (A study of
military aircraft avionics software led to a similar prediction: by 2015,
every man, woman, and child in the United States will have to be writing
avionics software.)

Obviously, not every person in the country became a telephone
operator. Technology advanced fast enough to increase dramatically
the productivity of each operator, to the current situation where tech
nology allows automatic placing of almost all calls. A similar advance in
software engineering technology is needed.

Most observers agree that because software development is a substan
tially more creative activity than placing a telephone call, the advances
in technology that will have the most benefit are new techniques and
methodologies that can be employed by software engineers, rather than
new machines that do the jobs for the engineers. Education is the major
path to the goal of developing and using this new technology.

Software engineering education has several objectives. The first two
are directly related to the problems already discussed: education must
produce more software engineers and must increase the productivity of
the current practitioners. Two other objectives are to produce two kinds
of professionals, one that can use the emerging technology, and
another that can create the needed new technology. We believe that all
of these objectives can be met by a coordinated set of educational ef
forts.

First, it is necessary to identify just what constitutes the body of
knowledge we wish to call software engineering. Second, that material
needs to be organized as a coherent curriculum, complete with all
varieties of supporting educational materials. Third, colleges and
universities must be helped in many ways, including faculty develop
ment, so that they may offer the curriculum; this will help increase the
number of software engineers. Fourth, existing software professionals
must be given the opportunity to receive this education also, since the
majority of them do not have broad backgrounds in the current prin-

www.manaraa.com

Educational Needs of the Software Community 435

ciples of the discipline. This will help increase the productivity of these
professionals ..

With the appropriate educational background, we believe software en
gineers will be able to adjust rapidly to the expected advances in
software technology, thus achieving the maximum increases in produc
tivity promised by that technology. Thus education is critical to prevent
ing the threatened "software crisis."

A Graduate Curriculum in Software Engineering

The Education Division of the Software Engineering Institute has under
taken to define the content of a software engineering curriculum. It has
been decided that we should base that curriculum on fundamental
knowledge from other disciplines, primarily computer science, rather
than starting from scratch. The amount of prerequisite material was
sufficiently large to make it impractical to try to structure the software
engineering curriculum at the undergraduate level.

Additionally, if the curriculum is to reach current software professionals,
most of whom already have undergraduate degrees, a graduate
program is likely to be perceived as more attractive and more valuable.
Many universities currently offer graduate programs for professionals,
and these have often been very successful.

These factors indicate to us that a professionally oriented master's de
gree program is likely to have the most significant impact on the educa
tional needs of the software community. This program might be offered
by some schools as a Master of Science in Software Engineering
(MSSE), and by others as a Master of Software Engineering (MSE).
However, we recognize that the content of the curriculum, rather than
the diploma, is most important, and so the material should be made
available to professionals through their companies as well as through
universities.

The development of an entirely new curriculum is a difficult task. It
requires an enormous investment of resources, including personnel,
time, and money. Probably no one university has the resources to com-

www.manaraa.com

436 Educational Needs of the Software Community

mit to such a project. On the other hand, the Education Division of the
SEI has been charged with investigating all aspects of software en
gineering education, and has been given the resources to do whatever
needs to be done. This includes not only the design of the curriculum,
but the production of all kinds of supporting materials (textbooks, ex
ercises, software, etc.) Furthermore, the SEI can take an active role in
the faculty development needed to allow universities to offer the cur
riculum, and can serve as the principal software engineering education
resource center.

The plan for the development of the curriculum and support materials is
relatively easy to describe. We expect to do the following:

1. Identify the fundamental principles of software engineer
ing.

2. Identify the current techniques, methodologies, and tools
of software engineering.

3. Identify those aspects of software engineering theory and
practice that are essential to all professionals (the core
curriculum), and those aspects that are specialized areas
of knowledge needed by only some software engineers.
This latter category will include topics that are application
domain specific, and topics pertinent to the activities of
only certain members of a development team (such as ad
vanced topics in project management or software quality
assurance).

4. Organize the content of the curriculum into modules of ap
propriate size to allow packaging the curriculum for the
varying needs of diverse audiences. Our current idea is
that a module will require about 15 hours of student con
tact time. One module could be taught as a two day in
dustry short course; three related modules could be taught
as a university semester course.

5. Produce complete documentation of each module, includ
ing course outline and syllabus, reading list, textbook sug
gestions, and exercise suggestions.

6. Where necessary, cause the production of additional sup
port material, including textbooks or monographs, educa
tional software (specifically, tools to support a software en
gineering laboratory), and materials to help instructors
provide large scale project experience to students.

www.manaraa.com

Educational Needs of the Software Community 437

Once the curriculum is designed, our plan is to provide all the support
necessary to have it successfully inserted into universities and company
education programs. This will focus primarily on faculty development,

because the shortage of computer science and software engineering
educators is acute. We expect to provide opportunities for existing
faculty to learn the material of the curriculum in traLning workshops, and
then they can take the curriculum and materials back to their home in
stitutions. The resultant compounding effect will allow us to teach more
software engineers than if we presented the material directly to the stu
dents.

Special Issues in Software Engineering Education

The graduate curriculum is the most important immediate step toward
improved software engineering education, but it is not the only step.
Software development projects require a variety of personnel, with a
variety of skills. Examples are project managers (management skills),
applications!:?cientists and engineers (domain specific knowledge), and
software engineers and software engineering technicians (various levels
of software knowledge and experience). The educational backgrounds
of these persons will vary considerably, although all will need some
familiarity with computer systems and software systems.

To address these needs, it is envisioned that additional educational
projects will be undertaken by the SEI. Among these are the develop
ment of speCialized modules or courses for advanced students and
practitioners. A doctoral program in software engineering will also be

investigated.

However, the greatest number of software professionals will be needed
at a lower level. As the discipline of software engineering matures, we
expect that it will be easier to distinguish it from computer science, and
thus it may become possible to develop an undergraduate curriculum in
software engineering.

The need for such a curriculum is beginning to become evident. Many
employers now comment that newly hired computer science graduates
are not ready for immediate assignment to software development

www.manaraa.com

438 Educational Needs of the Software Community

projects because of their inexperience with large projects, their lack of
group programming skills, and a lack of understanding of management
and business economics. Such comments should not be regarded as
indictments of computer science curricula, but rather as an indication
that employers really need software engineers rather than computer
scientists. Just as employers have distinguished physicists from electri
cal engineers, and chemists from chemical engineers, when recruiting
new college graduates, they will soon begin to distinguish computer

scientists from software engineers.

One other special issue should be mentioned. The defense contractor
community will be developing future software systems in the Ada ™ lan
guage, and therefore there is a great need for software engineers
capable of using this language. However, Ada is one tool among many
that a software engineer must use. The foundations of software en
gineering, upon which Ada is based, are the domain of software en
gineering education, and are being addressed by the graduate cur
riculum project. The syntax and semantics of Ada, on the other hand,
are training issues. The Technology Transition and Training Depart
ment of the SEI is involved with Ada insertion projects. However, the
leaders in Ada training are the Ada Joint Program Office (AJPO), the
Association for Computing Machinery (ACM) Special Interest Group on
Ada (SIGAda), and the Ada JOVIAL Users' Group (AdaJUG). The SEI
will not try to duplicate the efforts of these groups.

Summary

The apparent exponential growth of the size of software systems for
both the Department of Defense and others needs to be matched by a
similar growth in the number and productivity of software engineers.
The most significant means of such a large productivity increase is the
development of new technology to support software engineering. This
technology is likely to take the form of techniques, methodologies, and
associated software tools, and the use of this technology will require a
substantial education effort.

The SEI Education Division has the resources to undertake this effort.
Its major activities are the development of a graduate curriculum in

www.manaraa.com

Educational Needs of the Software Community 439

software engineering, production of supporting materials, and the inser
tion of the curriculum into the educational community. The impact of
this effort is expected to be apparent in the 1990s.

References

[1] Dolotta, TA and others. Data Processing in 1980-85. John
Wiley & Sons, New York, 1976.

[2] Morrisey, J. and Wu, S.Y. "Software Engineering: An Economic
Perspective." In Proceedings, Fourth International Conference
on Software Engineering. IEEE Catalog, September, 1979.

[3] Phister, M., Jr. Data Processing Technology and Economics.
Digital Press, Bedford, MA, 1979.

[4] Reifer, D.J. "Software Acquisition Planning for the DoD Space
Transportation System (Space KShuttle)." In Proceedings,
AIAAlDPMA Third Software Management Conference.
Washington, D.C., 1977.

[5] Stokes, J.C. "Managing the Developing of Large Software Sys
tems: Apollo Real-tie Control Center." In Proceedings, Wescon
70, August, 1970.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

