Software

Enginee
Educatic

The Educationa
of the Software !

Software Engineering Education

Software Engineering Education

The Educational Needs of the Software Community

Edited by
Norman E. Gibbs and Richard E. Fairley

With 31 lllustrations

~ Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo

Norman E. Gibbs Richard E. Fairley

Software Engineering Institute Wang Institute of Graduate Studies
Carnegie-Mellon University Tyngsboro, MA 01879

Pittsburgh, PA 15213 USA

USA

The Software Engineering Institute is operated by Carnegie-Mellon University under contract
with the Department of Defense.

The views and conclusions contained in these proceedings are those of the authors and
should not be interpreted as representing official policies, either expressed or implied, of the
Software Engineering Institute, Carnegie-Melion University, Wang Institute of Graduate
Studies, the Department of Defense, or the U.S. Government.

Library of Congress Cataloging in Publication Data
The Educational needs of the software community.

Papers presented at the Software Engineering
Education Workshop, held at the Carnegie-Melion
University Software Engineering Institute,

Feb. 27-28, 1986, sponsored by Software Engineering
Institute and Wang Institute of Graduate Studies.

Bibliography: p.

1. Computer software—Study and teaching
(Higher)—United States—Congresses. |. Gibbs,
Norman E. (Norman Edgar). li. Fairley,

R. E. (Richard E.). lli. Software

Engineering Education Workshop (1986:Carnegie-
Mellon University Software Engineering Institute)

V. Carnegie-Mellon University. Software Engineering
Institute. V. Wang Institute of Graduate Studies.
QA76.751.E38 1987 005.1'07'1173 86-29757

© 1987 by Springer-Verlag New York Inc.

Softcover reprint of the hardcover 1st edition 1987

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
by anyone.

987654321

ISBN-13: 978-1-4612-9129-9 e-ISBN-13: 978-1-4612-4720-3
DOI: 10.1007/978-1-4612-4720-3

Foreword

Participants in the Software Engineering Education Workshop included
25 invited persons from academia, industry, and government, and 10
members of the SEI technical staff. Invited participants were asked to
write position papers; suggested topics were: Intellectual Foundations
and Fundamental Concepts of Software Engineering, Current Practice
and Needs Assessment, Current State of Software Engineering Educa-
tion, Technology Transition, and Evolution of Software Engineering.
Based on the abstracts received, the chairmen with the help of the SEI
Education Division staff partitioned the papers into four categories:

» Software Engineering Principles

o Current Software Engineering Curricula

¢ Experiences with Existing Courses

» Future of Software Engineering Education

Working groups were formed by the organizers to address issues in
almost the same four categories. Discussion questions were prepared
with the goal of focusing the working groups on issues the SEI should
address as part of its educational mission. Three weeks before the
meeting all participants received the position papers, working group as-
signments, working group questions, and the material included in the
appendices to these proceedings.

The opening session included welcomes from the workshop chairmen
and a keynote address delivered by Professor Frederick P. Brooks, Jr.,
Kenan Professor of Computer Science, University of North Carolina at
Chapel Hill, and author of the classic book, The Mythical Man-Month.
Professor Mary Shaw, SEI Chief Scientist, discussed the scientific
aspects of software engineering based on ideas from the position
papers and her experience as a leading software engineering educator.
Professor James Collofello, Arizona State University, summarized the
papers that discussed current software engineering curricula. After
these presentations at the opening session, Professor Nico Habermann
of Carnegie-Mellon University moderated a discussion that included the
three speakers as panelists. The purpose of the panel was to give all
the participants an opportunity to comment on the position papers and
the questions to the working groups prior to the smaller group meetings.

vi Foreword

The working groups met during Thursday afternoon and Friday morning.
They made brief reports to the entire group the first afternoon and final
reports were given at the closing session Friday afternoon.

The proceedings are arranged into four major sections. The first in-
cludes a transcription of the keynote address and the panel discussion
moderated by Nico Habermann. The next section includes all the work-
ing papers submitted by the participants. Allison Brunvand of the SEI
Education Division placed them into a consistent format under the
guidance of Susan Dunkle and Purvis Jackson of the SEI Documen-
tation Services. Any mistakes in the transcription and editing of the
papers are solely the responsibility of the SEI and not the authors. The
bibliographies of all papers were arranged into a single bibliography for
these proceedings. Because this bibliography may be useful to people
intending to start new programs, it is included immediately following the
papers and additional copies may be obtained from the Education Divi-
sion, Software Engineering Institute, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania 15213.

The third section is a summary of working group activity. It includes the
questions given to the working groups as their charge, a list of group
members, and transcriptions of final group reports. The SEI arranged
for a transcription service to record the keynote address, the panel
charging the working groups, and the reports of the working groups.
The reader must keep in mind that text presented orally will not appear
as polished as written text.

The last section includes two papers which were mailed to all par-
ticipants in advance of the workshop. Appendix 1 is an SE! draft cur-
riculum that played a central role in the deliberations of all the working
groups. Appendix 2 is an SEIl report on the educational needs of the
software community.

Preface

The 1986 Workshop, Software Engineering Education: The Educational
Needs of the Software Community, was held at the Carnegie-Mellon
University Software Engineering Institute (SEI) on February 27 and 28,
1986. The workshop was jointly sponsored by the SEI and the Wang
Institute of Graduate Studies. Norm Gibbs of the SEI was general chair
and Dick Fairley of Wang Institute was program chair. The primary
focus was on master’s level education in software engineering, although
there was some discussion of undergraduate and doctoral level issues.

The 1986 workshop was held almost exactly 10 years after the Interface
Workshop, Software Engineering Education: Needs and Objectives, was
held at the University of California, Irvine on February 9, 1976. The
main purpose of the 1976 workshop was to provide a forum in which
educators and people from industry could explore needs and objectives
in software engineering education. In contrast to 1976, the 1986 par-
ticipants were mostly educators with considerable experience in teach-
ing software engineering in academic and industrial settings. Four per-
sons who attended the 1976 workshop were also present at the 1986
workshop.

In 1976 few educators had extensive experience in software engineer-
ing education, but by 1986 a great deal of progress had been made. In
1986 many universities were routinely offering one or more software
engineering courses and at least three United States institutions: Wang
Institute, Seattle University, and Texas Christian University, were offer-
ing Master’s programs in software engineering. In addition, numerous
governmental and industrial organizations were offering a wide variety
of programs in software engineering, ranging from short training courses
to prolonged and intensive educational programs.

It seemed timely and appropriate to convene a limited attendance
workshop in which software engineering educators from academia, in-
dustry, and government were invited to assess the current state of
software engineering education and recommend future directions. It
also seemed appropriate that it be sponsored by both the Software En-

viii Preface

gineering Institute and Wang Institute. The SEI is a federally funded
research and development center established by the United States
Department of Defense to improve the state of software technology.
The Education Division of SEI, headed by Norm Gibbs, is charged with
influencing software engineering curricula development throughout the
education community. It has undertaken the task of working with
educators through the SEI affiliates’ programs to design, develop, insert
and support a graduate curriculum in software engineering. Wang In-
stitute of Graduate Studies was founded and endowed by the An Wang
family as a non-profit, autonomous institution of higher learning; Wang
Institute is not affiliated with Wang Laboratories. The primary goals of
the School of Information Technology of Wang Institute, chaired by Dick
Fairley, are to provide graduate level education in software engineering
and to offer other professionally oriented programs that meet the needs
of industry.

We were gratified by the time and effort that the participants devoted to
their position papers, and by the level of enthusiasm and quality of par-
ticipation they exhibited during the sessions. We believe that these
proceedings are a genuine contribution to the emerging discipline of
software engineering, and to software engineering education in par-
ticular. The quality of this contribution is a direct result of their efforts,
and we thank them. Of course, we take full responsibility for any errors
that have been made in transcribing and editing their contributions.

We also thank the support staffs of the SEI and Wang Institute. Their
collective expertise and cheerful competence in handling logistics, local
arrangements, and emergencies made chairing of the workshop and
editing of these proceedings pleasant and rewarding experiences. In
particular, we thank Allison Brunvand and Albert Johnson of the SEI
Education Division, Susan Dunkle, Purvis Jackson, and Carol Biesecker
of SEI Documentation Services, and Sue Hovey of Wang Institute for
their efforts.

The preface to the 1976 workshop on software engineering education,
which was edited by Peter Freeman and Tony Wasserman, and also
published by Springer-Verlag, contains the following paragraph. We

Preface ix

think it is as appropriate to this 1986 proceedings as it was to the 1976
proceedings:

"We believe that these proceedings will be of interest to all persons
involved in developing computer science and software engineering
curricula, not only in universities, but also in industry. Furthermore,
we hope that these proceedings can serve as the starting point for

additional work in the development of coherent software engineering
curricula."

Richard E. Fairley
Wang Institute of Graduate Studies

Norman E. Gibbs
Software Engineering Institute

June 1, 1986

Contents

Foreword
Preface
List of Participants

SECTION | Keynote Speech and Opening Discussion

Keynote Speech
People Are Our Most Important Product
Frederick P. Brooks, Jr.

Opening Discussion
A. Nico Habermann

SECTION II
PART 1 Software Engineering Principles

The Experimental Aspects of a Professional Degree
in Software Engineering
Victor R. Basili

Cognitive Science View of Software Engineering
Gordon H. Bradley

Software Engineering Education: An Idealized Scenario
Richard E. Fairley

Essential Elements of Software Engineering Education
Revisited
Peter Freeman

Software Engineering and Computer Science: How Do
They Differ?
Robert L. Glass

The Environment for the Software Engineer
A. Nico Habermann

Considerations for Graduate Software Engineering
Education: An Air Force Perspective

Walter D. Seward, Thomas C. Hartrum,

Gary B. Lamont, Duard S. Woffinden

vii
XV

16

29

30

35

52

61

75

78

87

xii Contents

Why Is Software Engineering So Difficult?
William E. Richardson 98

Technology Selection Education for Software Engineers
William E. Riddle and Lloyd G. Williams 107

Graduate-level Software Engineering Education:
A Practitioner’s Viewpoint
S.E. Smith 138

Some Observations on the Nature of the Software
Engineering “Problem” and Their Implications for

Software Engineering Education

William A. Wulf 143

PART 2 Current Software Engineering Curricula 148

Adapting to Changing Needs: A New Perspective

on Software Engineering Education at Texas

Christian University

James R. Comer and David J. Rodjak 149

The Software Engineering First Degree at Imperial
College, London
M.M. Lehman 172

The Master of Software Engineering Program at Seattle
University after Six Years
Everald E. Mills 182

Academic/Industrial Collaboration in a Postgraduate
Master of Science Degree in Software Engineering
David Budgen, Peter Henderson, Chic Rattray 201

PART 3 Experiences with Existing Courses 212

Skills versus Knowledge in Software Engineering

Education: A Retrospective on the Wang Institute

MSE Program

Susan L. Gerhart 213

Experience with a Software Engineering Project Course
W.M. McKeeman 234

Contents Xiii

Software Engineering Project Laboratory: The Bridge
Between University and Industry

Richard H. Thayer and Leo A. Endres 263
Software Projects in an Academic Environment

David B. Wortman 292
Exercises in Software Engineering

Jon Louis Bentley and John A. Dallen 306
PART 4 Future of Software Engineering Education 321

Trends in National Science Foundation Funded Research
and Their Impact on Software Engineering Education
W: Richards Adrion and Bruce H. Barnes 322

Software Engineering: Anomalies in Today’s Education
and a Prospectus for the Future

George F. Rowland, Jr. 330
Education for the Future of Software Engineering

Mary Shaw 344
PART 5 Bibliography 358

SECTION Ill TRANSCRIPTS

Report of the Software Engineering Principles
Working Group
A. Nico Habermann, Group Leader 369

Report of the Current Software Engineering
Curricula Working Groups

A. Report of the Subgroup on Existing Curricula
Al Pietrasanta, Group Leader 381

B. Report of the Subgroup on Best Curriculum
Jon Bentley, Group Leader 388

Report of the Future Software Engineering
Curriculum Working Group
Dick Fairley, Group Leader 401

Xiv Contents

SECTION IV APPENDIX

Appendix 1 Proposed Curriculum for a Master of Software
Engineering (MSE)
James Collofello, edited by James E. Tomayko 420

Appendix 2 Educational Needs of the Software Community
Gary Ford 432

List of Participants

Dr. Bruce H. Barnes
NSF

Computer Research
Washington, D.C. 20550

Professor Victor R. Basili
Department of Computer Science
University of Maryland

College Park, MD 20742

Dr. Jon Louis Bentley
AT&T Bell Labs

Room 2C-317

Murray Hill, N.J. 07974

Professor Gordon H. Bradley
Department of Computer Science
U.S. Naval Postgraduate School
Monterey, CA 93943

Dr. Frederick P. Brooks, Jr.
Department of Computer Science
University of North Carolina

New West Hall 035 A

Chapel Hill, N.C. 27514

Professor David Budgen
Department of Computing Science
University of Stirling

Stirling FK9 4LA Scotland

Professor James S. Collofello
Department of Computer Science
Arizona State University

Tempe, AZ 85287

Professor James R. Comer
Department of Computer Science
Texas Christian University

P.O. Box 32886

Fort Worth, TX 76129

Dr. Richard E. Fairley

Wang Institute of Graduate Studies
Tyng Road

Tyngsboro, MA 01879

Dr. Gary A. Ford

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor Peter Freeman
Department of Computer Science
University of California, Irvine
Irvine, CA 92717

Dr. Susan L. Gerhart

MCC

Software Technology Programs
9430 Research Blvd

Echelon Building One

Austin, TX 78759-6509

Dr. Norman E. Gibbs
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor Robert L. Glass
Software Engineering Program
Seattle University

P.O. Box 22012

Seattle, WA 98122

Professor Nico Habermann, Chair.
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor M. M. Lehman
Department of Computing
Imperial College

180 Queen’s Gate

London SW7 2B7 England

xvi

Dr. William McKeeman

List of Participants

Dr. S. E. Smith

Wang Institute of Graduate Studies IBM Corporate Technical Institutes

Tyng Road
Tyngsboro, MA 01879

Professor Everald E. Mills
Software Engineering Program
Seattle University

900 Broadway Ave.

Seattle, WA 98122

Mr. Al Pietrasanta

IBM Corporate Technical Institutes
Systems Research Institute

500 Columbus Ave.

Thornwood, N.Y. 10594

Major William E. Richardson
Department of Computer Science
U.S. Air Force Academy
Colorado Springs, CO 80840

Dr. William E. Riddle
rMise

P.O. Box 3521
Boulder, CO 80303

LCDR George F. Rowland, Jr.
Department of Computer Science
Ward Hall

U.S. Naval Academy

Annapolis, MD 21402

Lt. Col. Walter D. Seward
Air Force Institute of Technology
WPAFB, OH 45433

Dr. Mary Shaw

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Software Engineering Institute
500 Columbus Ave.
Thornwood, N.Y. 10594

Professor Richard H. Thayer
Department of Computer Science
California State University
Sacramento, CA 95819

Dr. James E. Tomayko
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor David B. Wortman
Computer Research Center
University of Toronto
Ontario M5S 1A4 Canada

Dr. William A. Wulf
Tartan Laboratories
477 Melwood Ave.
Pittsburgh, PA 15213

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Observers:

Dr. Mario Barbacci

Dr. Peter Feiler

Mr. Albert Johnson

Mr. John R. Nestor

Dr. Joseph A. Newcomer
Mr. Charles Weinstock
Mr. William Wood

Mr. Karl Shingler
U.S. Air Force
SEI Joint Program Office

Section |

Keynote Speech
and
Opening Discussion

People Are Our Most Important Product

Frederick P. Brooks, Jr.
University of North Carolina at Chapel Hill

Introduction

The function of a keynote speech (if any) should be to give perspective.
Coming from outside the software engineering research field, but from
within the computer field, | would like to offer an outsider's perspective
on some current software engineering curricula proposals.

Let me start with a disclaimer. Since writing The Mythical Man-Month, |
have not worked in software engineering management nor in software
engineering research. Everyone here is more current in the field than
I. 1 am a lifetime fan of computers and of software engineering; | teach a
course in the subject, and | try to stay up-to-date in the field. But | am
not really working in it.

The peak year in sales for The Mythical Man-Month was only two years
ago. Yet the book was written in 1975, about an experience in 1963-65.
The fact that it has the slightest relevance now is a sad comment on the
progress of the discipline.

Wave After Wave

In the some 40 years since | first became interested in computers, we
have seen seven revolutions, the first of which is the computer revolu-
tion represented by the Harvard Mark I. | was 13 when the Mark | was
introduced, and watching with big eyes. That was the first | had ever
heard of the idea of a computer. | decided that it was the exciting thing,
and | started heading that way.

Second, came electronic computers and the invention of assemblers
and interpreters. In 1952, | had a chance to learn to program (in octal
absolute) on the not-quite-delivered, vacuum-tube-based IBM 701. That
experience was a major milestone for me.

2 People Are Our Most Important Product

The third revolution was brought by the transistor and Fortran — for me,
that meant three years helping design Stretch. The System/360 was
another major milestone for me. It represented the fourth revolution —
integrated circuits and mandatory operating systems.

The fifth revolution brought minicomputers and the concurrent develop-
ment of communications as an inherent part of most computer systems.
The most recent revolution involves microcomputers and — one of the
most important factors today — the mass marketability of microcom-
puter software and its corollary, packaged application programs.

Hardware Software

1. Computers

2. Electronics Assemblers

3.Transitors Compilers

4. Integrated Circuits Operating Systems

5. Minicomputers Communications

6. Microprocessors Programming Environments

7. Mass-Market PCs Packaged Applications
Figure 1. Revolutions

Twenty Tries at a Software Project Course

One of the things | did as soon as | got to Chapel Hill, was to start the
kind of one-semester, small-team, classical project course that Jon
Bentley, who is a member of the technical staff at AT.& T. Bell
Laboratories says in his paper is not the right way to do it. | think
everyone agrees it would be better as a two-semester project course.

Except for two years on sabbatical, | have taught that course every year
for 22 years. Twice | have team-taught it with David Parnas, which was
phenomenally exciting. One year, | taught it with Bernard Witt, of IBM’s
Federal Systems Division, and another year with Constance Smith, who
taught at Duke. The evolution of the course has been interesting.

Brooks 3

| am teaching the software engineering project course this term, as for
the last two years, over our statewide television network. | can see the
students at the remote sites, and they can see me. That has an un-
expected advantage: although | would normally be teaching live over the
network, | can give them a videotaped lecture. That is what | am doing
there this afternoon.

One of the laymen at the Microelectronics Center of North Carolina at
Research Triangle Park, which serves six member institutions, had been
watching a lecture on a monitor installed in the lobby. He said, "You
don’'t seem to be teaching. You seem to be preaching." Indeed so.
There are two reasons why. One is we do not really know that much to
teach. Gordon Bradley, who is a member of the Computer Science
Department, Naval Postgraduate School, Monterey, California and Mary
Shaw, who is the Chief Scientist at the Software Engineering Institute,
speak in their papers about the lack of identification of principles.
Second, we are trying to teach practices that we believe — and this is
an article of faith — involve short-run pain for long-run benefit. Preach-
ing always involves persuading people to undergo short-run discipline
for long-run benefit. That is what preaching is all about. So it is no
accident that a great deal of what we do when we teach software en-
gineering is, in fact, exhortation. We are trying to motivate the will of the
students, rather than merely to inform the mind. | expect some element
of exhortation to be necessary forever. The conversion of our students’
long-run ambitions into daily motivation is always an important function
of the teacher.

Today, | want to talk about the state of software engineering as | under-
stand it, and some opinions on the curricula issues that are before us.
The viewpoint, | fear, will be that of the leper at the feast. After reading
the pre-distributed position papers, | find | am in fundamental disagree-
ment with a good deal of what is proposed, described, and practiced.

4 People Are Our Most Important Product

On Software Engineering

Engineering

| will start with my definition of software engineering. | like to distinguish
four things: a program, a programming system, a programming product,
and a programming system product. Software engineering is concerned
with building programming products and programming system products.
In ‘other words, it is proper to call it software engineering. It is indeed an
engineering discipline — it focuses on building.

X3 —tp
A A
Programming
Program System
(Interfaces
| System Integration)
; X3
A A
Programming Programming)
Product Systems
(Generalization, Product
Testing,
Documentation,
Maintenance)

Figure 2. Evolution of the Programming Systems
Producto!

In graduate school | roomed with a high-energy physicist. He spent a
year building the electronic apparatus for his experiments. He then
spent two weeks at Brookhaven National Laboratory taking pictures of
events in a cloud chamber, then a year looking at his 100,000 pictures.
If you looked at the way he spent his time, you would have said he was
doing engineering. On the other hand, | have known engineers who

1Frederick P. Brooks, Jr., “The Mythical Man-Month," © 1975, Addison-Wesley Publish-
ing Company, Inc., Reading, Massachusetts. Pg. 5, Fig. 1.1. Reprinted with permission.

Brooks 5

seem to spend most of their time taking measurements about hitherto
unknown phenomena. If you were asked what he was, judging by how
he spends his time, you might say, "He looks like a physicist."

The difference lies in the motivation and not in the activity. The scien-
tist builds in order to learn; the engineer learns in order to build.
We can accurately use this distinction to characterize software en-
gineering. As an engineering discipline, it is concerned with quality,
effectiveness, cost, and schedule — concepts that, if not alien, are at
least of little concern to the underlying science.

Arbitrary Complexity

What is peculiar about the engineering of computer software objects?
How does it differ from the classical disciplines? It differs in an impor-
tant way from two of the supporting disciplines, mathematics and
physics, from which electrical engineering derives. Most math-
ematicians and physicists dislike real-world computer science problems.
The reason is that our problems are characterized by what | call
arbitrary complexity. Anyone who has wrestled with an operating sys-
tem and had to interface 44 different kinds of input-output devices; or a
payroll system and had to deal with the income tax for 50 states, plus
the federal government, plus innumerable cities that have peculiar in-
come tax laws; or wrestled with the other forms of artifact that we have
to build and the environments into which we have to build them, will
recognize this as a common characteristic.

Mathematicians and physicists dislike this for different reasons. The
mathematician dislikes complexity, and the mathematician’s fundamen-
tal attack on complexity is to abstract. One forms an abstract model of
the problem, solves the abstract model, and then applies the solution
back to the original problem. That paradigm has been phenomenally
successful. The history of applied mathematics, intertwined with the
physical sciences for more than two centuries, is one of the rich results
produced by that model. Increasingly, however, as one comes up
against intrinsic complexity, we find that smooth models of classical
mathematics do not work. So we come to fractal mathematics for
describing or abstracting roughness. We continually have to invent new
mathematics to deal with deeper levels of complexity.

6 People Are Our Most Important Product

On the other hand, physicists dislike the arbitrariness. They are no
strangers to complexity. Anyone with 26 elementary particles recog-
nizes that the world is complex. What they dislike is that it is arbitrary,
because physicists, no matter how atheistic, are fundamentally con-
vinced that there are not 26 elementary anythings; that there is a fun-
damental, unified theory to be found. It is that faith that keeps the
physicist going forward.

No such faith comforts the computer scientist. Our complexities are
arbitrary, because they are the fruits of many independent minds acting
independently. Consider the task of interfacing to an operating system
44 different input-output devices, each designed by a different engineer-
ing team. Unless there was a pre-existing interface, there is no reason
to believe those designers acted under any unifying principle at all. This
arbitrary complexity of interfaces characterizes much of what we do. It
is a reason why we had to develop a new science, with approaches and
techniques different from those of the classical disciplines.

What About Software Makes Its Engineering Hard?

A natural question is, "Does it have to be this hard?" Is it not just that
we have not yet found the key to unlock the door? Studying the nature
of these arbitrary complexities, we see that the essence in building
software products inyolves the complexity of the conceptual structures
we are working with, rather than the labor of representing them. This
complexity is compounded by the necessity to conform to an external
environment that is arbitrary, unadaptable, and ever-changing.

All we ask ourselves, "How have the big gains in productivity and effec-
tiveness in software engineering come in the past,” | think we will see
those gains — in high-level languages, time-sharing, unified program-
ming environments — all broke major artificial roadblocks to expressing
the complexities of our solutions and our problems. The high-level lan-
guages remove the artificial roadblock of coding programs in machine-
level instructions in zeroes and ones. Time-sharing removed the artifi-
cial roadblock of limited access to hardware. The unified programming
environments remove the artificial roadblocks that were caused by a
lack of common file formats and command philosophies.

Brooks 7

We will make progress by continuing to remove these artificial
roadblocks, via workstations, better languages, richer programming en-
vironments, etc. | think, however, that fundamental progress can only
come by really attacking the underlying complexity, not the difficulties of
expression. There are many promising attacks, as Figure 3 suggests. |
will not take the time to talk about them, because | really want to go on
to curriculum. But | must remark that we vastly underestimate the work,
the difficulty, and the error-proneness of setting system requirements in
the first place.

e Top-down design — N. Wirth
» Qutside-in design, system architecture — G. Blaauw
¢ Incremental growing on an executable driver — H. Mills
¢ Information-hiding modules — D. Parnas
e Chief Programmer teams — H. Mills
« Verification — E. Dijkstra, Floyd, Hoare

useful, but limited by costliness
o GOTO-less programming — E. Dijkstra

structure, yes; avoiding GOTO, no.
 Structured walk-throughs

Figure 3. Key Ideas

Iterative Development is Crucial

I like Christopher Alexander’'s maxim in Notes on the Synthesis of Form:
"The only way to define fit, is as the absence of misfit." If one wants to
grind a steel plate flat, one takes an optically flat standard plate, paint
the whole works with purple goo, slap it up against the plate one is
going to grind, then grind all the purple places. Then one paints the
optical flat with goo again, slap the two together again, and grind the
places that are still purple with a finer wheel until, finally, instead of none
of it being purple, all of it is purple. So, the only operational way to
define this optically flat plate, is having no bulges or valleys. Cor-
respondingly, | believe the process of dealing<with arbitrary complexity,
in terms of the user’s requirements, is iterative: we build prototypes, put

8 People Are Our Most Important Product

purple paint on them, slap them up against real users, and grind the
places that are still purple — in the products, not in the users.

lteration on a programming product specification is an inherent, proper
part of the professional’s job. We cannot stand back and gripe that the
user didn't know what he wanted. We must take it as given that the
user does not and cannot know what he wants about artifacts as com-
plex as those we now build. The mind of man cannot imagine all the
ramifications of such artifacts. There must be an iterative cycle in which
the professional works with the user to define the requirements;
demonstrates their consequences in human factors, cost, and perfor-
mance; then in a prototyping phase iterates with the user to develop a
product that is, in fact, satisfactory.

The Failure of the "Standard Software
Development Process"”

Let me offer a discouraging observation on the state of the art. | did a
little mental study in which | wrote down a set of what | call "exciting
software products." These are ones that have avid fan clubs, ones that
people are crazy about. You can add names to this list, shown in Figure
3. We typically call the fans bigots: APL bigots, for instance. | think the
ancestral group should be Fortran’'s. Those of us who work with
physicists and chemists today, recognize that there are still Fortran
bigots about! Each of these exciting products has such a group. | put
Visicalc as the latest, but not the last.

| put a different set of things, which you can call the "work horses" of the
field, in another category. This group is made up of things that are
immensely useful, in many cases immensely successful, and have
made major contributions to getting work done. People appreciate
some of their successful characteristics and don’t appreciate others, but
it is very hard to find bigots, excited fans, about any of them.

Brooks 9

Outside Product From Product

Houses Houses

Fortran

APL 0S/360
COBOL

Pascal Algol

LISP DEC’s VMS

C PL/M

UNIX Ada

Tenex IMS

Visicalc

VM-CMS

System R

Figure 4. Exciting Software Products

| have trouble finding any exciting software product — one that arouses
passion on the part of its users — that was developed inside a normal
product process. What does that tell us about the normal product
process? About the state of the art? About the importance of teaching
the normal product process? | think it tells us something about software
products and designs in general: the thing that makes exciting software
products is conceptual integrity, and conceptual integrity comes from
individuals.

One can elaborate a little bit. Committee design is a minimax strategy.
It limits the losses and goofs. It also limits the upper reach of quality,
elegance, function, and speed. This is true of bridges, cars, movies,
novels, paintings, music, etc. So the theorem | would leave you with,
because | can't prove it, is that a product that surely excites somebody
is more likely to excite a lot of people than a product that more or less
suits everybody. The "work horses" | referred to, the ones that do not
have fan clubs, can be characterized as having "homogenized designs,"
and the ones with bigots, "idiosyncratic designs." The homogenized
design process is aimed at producing products that more or less suit
everybody. You may want to propose other candidates, and you might
challenge some of my choices of candidates, but | think that the thrust of
those two sets is unmistakable.

10 People Are Our Most Important Product

o Limits losses and goofs
* Also limits the upper reach of
quality/elegance; function; speed
 Bridges, cars, movies, novels, theorems, paintings, music
¢ ldiosyncratic vs. Homogenized

A product that surely excites somebody is more likely to
excite a lot of people than one that more or less suits
everybody.

¢ True of software system
o Of software engineering curricula, too.

Figure 5. Committee Design is a Minimax Strategy
On Software Engineering Curriculum

Standard vs. Individualistic

| think this theorem is also true of curricula. We may be richer, in the
process of evolving a generally accepted software engineering cur-
riculum, if we have a /ot of places forming a /ot of curricula and publish-
ing them, than if we move too rapidly toward any kind of standard cur-
riculum. If you look in many different college catalogs, you will see that
there has developed a great deal of standardization among under-
graduate physics curricula, for example. In the middle two years of
undergraduate physics, one takes the same courses anywhere one
goes, and one may take them from the same text books. Is this done
through standard curriculum development by the American Physical
Society? No. The similarity exists because the importance of the sub-
ject matter is self-evident: there is a consensus in the field of what the
principles are. | suggest that a standard curriculum be grown organi-
cally by developing a set of principles. That is the only way to make it
durable, important, and portable.

Does that mean it is not useful to develop model curricula? Of course it
is.useful._In any branch of art, the people who went through it first, and

Brooks 11

learned what not to do, can be of great service to those who come on
the scene by explaining where the pitfalls and minefields are. Sharing
experience with curriculum development saves people from making the
same mistakes again.

The most important principle to teach a software engineer is, "Don't
build software (if you can help it)." It is almost always cheaper to buy it
if you can, and it is almost always cheaper to buy it even if its price is
about the same as your estimated cost for you to build it. That is, one
generally underestimates the effort required to build product-quality
software. Even by buying it, you may not get product-quality software,
but your odds are much better.

Permanent vs. Transient Truths

From the perspective of looking at seven computer revolutions over the
past 40 years, the first thing that strikes me is that one has happened
about every six years. Second, most of what we learned and talked
about in the 1950’s, we would not think of teaching today. Much of what
we taught is no longer true, or if true, no longer relevant. Are we train-
ing people for an initial job or educating them for a career? If we are
educating for a career, | wholeheartedly support Mary Shaw’s identifica-
tion from the Carnegie Plan of what is involved in professional education
for a career. We need to teach them to think like software engineers,
rather than to train them in 27 programming languages, 15
methodologies, and 30 tools. That means they will have to be exposed
to some methodologies, some tools, and some programming languages.
But those are not our objectives. Our objective is to shape ways of
thinking, and, by experience at wielding some tools, to develop and
facilitate the implementation of new tools in the field.

That brings me to the points about which | would argue. It seems to me
that all the central questions about software engineering curricula can
be summarized by a set of dichotomies, as in Figure 6.

12 People Are Our Most Important Product

Standard V8. Individualistic
Transient VS. Permanent
Fat V8. Thin

Narrow VvS. Solid

B.S. vS. M.S.

Science vs. Design
Projects VvS. Exercises

Figure 6. Software Engineering Curricula

Thin vs. Fat

Let me put forth another theorem: if you do not know what to teach in a
software engineering curriculum and, if in putting one together, you find
a lot of modules that are short on principles — where one can teach
only tools or methodologies, or today’s practices — instead of most of
those modules, teach nothing at all. Instead, encourage students to
spend those hours learning something such as physics, mathematics, or
accounting, which they do know what to teach. One of the most valu-
able courses | had as an undergraduate, and today use regularly, was a
one-semester course in accounting for non-accountants.

| would not offer an undergraduate software engineering curriculum at
all. | would offer a two-semester software engineering course, as part of
a computer science curriculum. Young people come to me and say, "l
want to be a computer professional.” | reply, "Do you want to go to
graduate school, and become a real professional?" If they say "yes," |
say, "Do not take a computer science major as your undergraduate.
Get educated.”

Our oldest son fell into that fiery passion for computers which often
strikes in the teen years. It is very much like being engaged and being
married. You want to experience and enjoy that initial passion, but you
would like to grow out of it into a more mature relationship, one that will
always be fired with moments of the passion. | encouraged each of our
children to do that with the computer passion while they were in high
school, because it can ruin a college year if it first strikes then.

Brooks . 13

When that son got ready to go to college, he wanted to study computer
science. | said "Well, if you really want to work with computers, do a
physics major. Study all of the sciences. Do not fall into this one just
because it is handy." (He had been exposed to a lot of computers
during his life.) "Then, when you are a senior, if you still want to be-
come a computer scientist, | will quit hindering and start helping. But
first, sample all of the sciences to see if your infatuation with computers
comes merely from that propinquity.” The summer after his junior year
we were walking on the beach and | said, "Well, son, what do you think?
Which subject interests you most?" And he said, "You go into a room,
and you look around, and you say, ‘Look at all the pretty girls.” Then you
say, ‘But this is the one | love.™ 1 said, "l quit." He is now in a PhD
program in computer science at Stanford.

Look at your undergraduate college experience. Which parts do you
retain as most valuable? For me, it is a Shakespeare course, a French
literature course, a lot of experience in public speaking, a lot of training
— extracurricular and curricular — in how to run meetings, writing train-
ing, an accounting course, and especially some courses in electricity
and magnetism. Those experiences are still very useful to me. | can tell
you lots of things | spent hours on that | have not used. Some of them
were in the liberal arts, but many others were in the major.

In like manner, we must train professionals who have been educated to
be citizens, leaders, and communicators. The software product today
consists of more documentation than code, and the good software
product todéy includes good documentation. How will you learn to write
if you have not studied the good models of writing and practiced the
techniques? Do we want to displace a broad and useful undergraduate
education with training in software engineering tools and methods?
Surely not!

Broad vs. Narrow

At the graduate level means | would recommend a particularized
software engineering curriculum only to practitioners who have had field
experience and are coming for career upgrade education, who know
they are getting a specialized, technical training, not graduate educa-

14 People Are Our Most Important Product

tion. For all new software engineers, | would recommend a master’s in
computer science, with several courses in software engineering, but not
a software engineering curriculum. Why? Because much of what we
teach today will not be true ten years from now, and a great deal of the
rest will not be relevant. More important, they will need the broader
knowledge.

Can anyone in the software-building business really operate without un-
derstanding simple accounting? Can anyone in software engineering
really operate without understanding the principles of at least the first
course in numerical analysis: concepts, error propagation, and the
vagaries of floating point?

Most curricula being put forth for software engineering — and there are
exceptions in the Proceedings — give a one-course, at most, discussion
of computing machines. Undergraduate exposure, which typically is
one course in machine architecture, is assumed for the graduate
courses — and those may include another one. Are we going to build
all of this software without understanding the engines with which it will
run, the trends shaping those engines, and the ability to project the cor-
responding advances for hardware that will revolutionize the kind of
software we have to build? So, | would argue very strongly for broad
versus narrow.

Solid vs. Hollow

All the university departments | know want to create a lot of courses that
address topics at the very forefront of the field. Why? Because that is
what the faculty wants to teach. So we construct, particularly at the
graduate level, what | call "hollow curriculum”; in football terms, no
blocking, no tackling, but Statue-of-Liberty plays all over the place. We
shuffle the core curriculum courses off to the most junior faculty mem-
bers to teach, and we elders teach the advanced ones. A solid cur-
riculum is one in which those intermediate-level things that seem like old
hat to us, but are not old hat to the students, fill in the interior. These
are the established principles represented by algorithms, data struc-
tures, operating systems, languages, machines, and compilers.

Brooks, 15

Design vs. Science

The science vs. design debate rages in engineering schools
everywhere, all the time. | think the papers in the Proceedings properly
emphasize that if the motivation is to build, we have to teach the art of
design and not merely the supporting sciences. It is in this respect that
software engineering courses differ from many of the underlying com-
puter science courses. We must teach people to design. The only way
to teach people to design is to have them design, criticize, have them
redesign, and then to have them build the designs.

Projects vs. Exercise

What they design brings us to the exercises vs. projects question: How
little and how big? | think the answer is you really want to do some of
both. The real issue is the precise balance between exercises and
projects.

Great Designers

Now one more thought: If we go back to the list of great software
products, exciting ones, we observe that they have a conceptual in-
tegrity that comes from very small design teams: Fortran with half a
dozen people, APL with two people, and so on. These design teams
are not only small, but also comprise really first class minds.

Let me suggest one more principle: great designs come from great
designers. Good designs, as distinguished from bad designs, can be
produced by teaching people good principles and proper methods. We
take the step from good designs to great designs, however, by finding
the people who have the talent to do the great designs.

Look over the whole body of classical music. How much has survived?
On any classical music station you can hear obscure selections from the
16th to the 19th centuries. When you listen to them, you know why they
are obscure. You can count on your ten fingers the great ‘composers in
each century. Indeed, even they have written some losers, but there
really is a qualitative difference between the great and the obscure.

Opening Discussion

A. Nico Habermann, Moderator

Nico Habermann: This discussion will focus on the work to be done by
the task forces, laying some common ground. To begin, | have sum-
marized four of the major points from the papers in the conference
proceedings and from the presentations this morning. We have heard
provoking words by Fred Brooks, Mary Shaw discussed the scientific
aspects of software engineering, and Jim Collofello remarked on the
current practice. So we will use this discussion hour to direct the task
forces to their particular tasks.

My four observations from the papers are:
1. The nature of software engineering.
2. The difference between small and LARGE.

3. Evolution vs. Revolution: No particular methodology or
technology will emerge that will radically change software
production.

4. Software engineering must grow with changing technol-
ogy.

First, it is clear from what we have read in the conference proceedings
that people are concerned about the nature of software engineering:
exactly where it fits in, how it has been developed up to this point, and
our responsibility. Software engineering should be based on principles,
and | think we can all agree on this. We are not talking about a large
number of tools or technologies, or even a large number of
methodologies. We must look for those things that have a long-term
value, not just for the things that are a "quick fix."

The second thing that is clear from the papers is that people are also
concerned about the distinction between small and large and how we
use small projects and exercises to show the complexity of the large
systems.

Third, we don't expect to find, all of a sudden, the cornerstone for solv-
ing all of the software production problems through education. Touching

Habermann 17

place that have changed the field dramatically. But the educational
process has not gone through these large revolutions. It is questionable
whether we can even spot the revolutions in the software engineering
discipline. And no one actually expects a sudden, major breakthrough
in software engineering that will help solve the problems of software
production.

Fred challenged this point very strongly. Is it, indeed, the right approach
to go with joint design? Is it, indeed, right to form these committees and
say, "Let the committee write a proposal for a master's degree in
software engineering curriculum?" If that is not the right approach, how
should it be modified?

Finally, the point has been emphasized several times today that the field
is growing very fast and education must keep pace. It cannot be static.
It must evolve over time. This point comes out in many of the papers: if
we look for a basis for software engineering, then we look for related
disciplines. No one seriously proposes to start software engineering
before such a basis has been laid. That actually is the foundation for
software engineering.

Sometimes | think methodologies, as Bill Wulf points out in his paper,
are overemphasized. I we don't have one, single methodology, it
doesn’t mean that we are lost. Just looking at the development right
now, we have lots of tools and techniques available.

We do agree, and this is clear from the papers, that there must be some
form of experimentation. Jon Bentley argued against the project idea,
but | think that, nevertheless, the experimentation idea is among all of
us. And Fred Brooks has argued strongly that experience should be
gained by practice, by being exposed to working on large systems, and
then come back to what is narrow education and training at the master’s
degree level. | think that some form of actual experimentation, included
in this type of software engineering education, is something we can all
agree upon.

So, let’s_open the floor and use these four points as a basis for our
discussion.

18 Opening Discussion

Manny Lehman: | think the critical issue — and the thing that is wrong
with many of the curricula in the proceedings — is that software en-
gineering is not yet based on principles of science and engineering. At
present, what software engineering requires, to a large extent, is the
identification of principles by the development of models, and the crea-
tion of engineering discipline. All we have now are lots of isolated
methods, tools, techniques, languages, and so forth. As software en-
gineers, we need to train our students to be able to observe, to think
and to perform; to be familiar with what exists but also to understand the
theory and principles that lie behind what exists and unite it into a
coherent discipline.

For example, to develop an integrated support environment involves an
understanding of what the programming process is all about. We have
to be able to develop theories of the process and to understand the
context in which particular objects are created. A civil engineer doesn’t
design the repeated picks and shovels; whenever possible he uses the
available picks and shovels to create a road, a bridge, or a large build-
ing. Software engineering has an integrated discipline that we and our
students are going to create in the future from the primitive concepts
that exist at the present time. Thus we have to educate students to be
familiar with much more than presently available methods and tools.

| liked Fred’s distinction between scientists and engineers: that scien-
tists build in order to learn and engineers learn in order to build. We are
still in the learning phase. The prime duty and responsibility and chal-
lenge to the software engineer — and to the software engineers we will
be training in the next decade — is to learn intelligently and to extend
and apply what is learned to the world at large — to the system
developers.

Nico Habermann: Thank you for your observation. 1 think that in order
to be able to build some theories, you also have to learn the technique
itself. And that is something you can learn at the undergraduate level.

Dick Thayer: The argument that we don’t have a science to base en-
gineeringgongingthegsoftwaregarea bothers me very little. We had

Habermann 19

medicine long before we had a medical science. | think that we are at
the stage in software engineering where we have to find ways of
developing software whether or not the principles are defined. The
science can evolve on its own — let’s first worry about how we go about
developing software.

Mary Shaw: | would like to reply to Dick. A colleague of mine com-
mented to me not long ago that even the purest of the sciences, math-
ematics, has withstood fundamental changes in its foundation on a num-
ber of different occasions without destroying the edifice that rests upon
that foundation. So those of us who feel an instinct to build the foun-
dation before starting to erect the edifice should take heed. Even in the
field in which you would find that most unlikely, progress can be made in
the absence of absolute certainty about the foundation.

Peter Freeman: | have not seen the relationship between software
engineering and systems engineering addressed, and | would like to get
the task forces’ comments on it. By systems engineering | am not refer-
ring to the purely mathematical, narrow definition, but to the very real
activity that goes on — where a large software system is being en-
gineered. As we automate factories, for instance, there is a large cadre
who are concerned with systems engineering, but it includes a lot of
things that are not software. What do you think is or should be the
relationship between software engineering — however we define it and
teach it — and that larger activity?

Fred Brooks: | get the impression that engineering discipline is in so
bad a shape, with respect to lack of principles, as we are. But, this is a
different "art." Even though there are books and curricula, the hard task
is to distill out the common part. We should be in conversation with the
professional systems engineers, watching closely what they are doing in
their education, but not necessarily hitching our cart to that horse.

Bill McKeeman: | think Fred pointed out the danger of committee work.
Maybe the SEI can use this more as a vehicle for getting creative
people the time and opportunity to produce those wonderful artifacts, in
the.discipline.or.the field.tself;to.do,what we want to do. But there is an

20 Opening Discussion

issue | would also like to see addressed on this: there is a difference
between the order in which something can be learned by a novice and
the order in which we would want to present it as the science. There
isn’t one big tome called "physics" that, when handed to students, sud-
denly lets them assimilate the knowledge of the physical world. Instead,
they do simple experiments and work from examples to generalize that
knowledge. So, the bottom up and top down approaches probably have
to be mixed; 1 would hate to see us dictate a top down approach. It
might kill our youngsters’ urges to learn.

Mary Shaw: | agree with Bill. The effective way to teach theory is in the
context of examples. The best principles we can find, in the context of
the best current practice, provides not only comprehensive skills, but a
set of tangible examples that can be used to appreciate the theory as it
comes.

Fred Brooks: A self-describing principle is: We learn inductively and
teach deductively.

Bill Wulf: In response to Bill’'s comments, it strikes me that physics is
taught by a succession of increasingly accurate lies. We have simple
models — and a series of progressively more accurate ones, which
gives us a couple of nice properties. First, it is fairly easy to com-
prehend the simple models and, second, it implicitly teaches the student
to be suspicious of any theory, which is just right when you are describ-
ing physical work.

But the real point is that we talk about principles and we talk about
things like methodologies and tools. Somewhere in there is missing the
notation of facts — our transition from being a producer of computer
sciences to being a consumer of them. It strikes me that the younger
kids coming out of bachelor’s programs simply don't have a lot of the
factual information | would expect them to have. They lack the factual
information to make good engineering decisions, and that is kind of
missed in the distinctions.

Nico Habermann: | tried to point that out in my paper. One principle |
listed was that the body of knowledge and the facts have to be relied
upon in teaching the discipline.

Habermann 21

Dick Fairley: Although | agree with most of what Fred Brooks said,
there is an elitist view expressed there. It is elitist on two counts. One
count is on fundamentals vs. techniques, and the second is how you
deal with the unwashed masses — you are still dealing with 1960’s
technology. The issue | want to raise is the balance between fun-
damentals and techniques for training vs. education. | think it is incum-
bent on us to produce graduates who grasp the fundamentals and can
continue to learn and evolve with the passing of time. But, people also
have to know how to do something useful and practical.

Fred Brooks: Harlan Mills remarked once that, in trying to inculcate
new programming methodologies throughout the IBM Federal Systems
Division, the most effective thing they have done is to mix new
graduates in with the old timers. The old timers understand the applica-
tions, and the new graduates understand the new methodologies. This
is, of course, following the university model, where the faculty learns
each new development from the graduate students.

But in terms of washing the masses, the masses among software prac-
titioners are already selected to be rather bright — and by now are
rather stuck in their ways. Part of the washing, then, is to expose them
to another generation.

Dick Fairley: The other thing | hear in your remarks is an industry
responsibility, as well as the university responsibility.

Mary Shaw: When a position is criticized as being elitist, there is often
hidden behind the criticism a suggestion that some of the students can’t
handle the material. | think we need to recognize that there are hard
problems in the world — and that those problems require people with
certain sets of skills to solve them.

We need to attack this by thinking a little more carefully than we have in
the past about the collection of job descriptions that exist within the
software field. Not everybody who deals with software needs to be a
software engineer. There is an increasing set of requirements on the
performance, reliability, and functionality of the software we are being
asked to produce. | think we are getting very close to the point that just

22 Opening Discussion

wanting to be a software engineer and having a lot of experience pro-
gramming is not necessarily a set of adequate qualifications — anymore
than liking bridges makes you qualified to be a civil engineer. If we can
identify the job descriptions within the domain, and the real require-
ments for each of those descriptions, then the argument about elitism is
blunted because we can identify positions for which a software en-
gineering education is required.

Bob Glass: Are there any disciplines we could incorporate in our cur-
riculum that would help people learn to grasp the complexity and ar-
bitrariness that Fred Brooks talks about?

Mary Shaw: We do have a set of abstraction techniques, as math-
ematicians do.

Bill McKeeman: That takes care of the complexity. How about a
course in political science for the arbitrary factor?

Peter Freeman: It is important to keep in mind what Fred said about
applying the liberal education approach, but not everybody thinks that
way, learns the fastest that way, or becomes successful that way. It
seems to me that we also have to keep in mind, as educators, that
people have different learning styles and different capabilities. The real
issue is to be able to provide appropriate diversity in the educational
experience.

Joe Newcomer: The scientific discipline is one that | see lacking in
many so-called software engineers. In the simple task of measuring the
system, it is not enough to just run the time command. You need to
understand what you are measuring, the accuracy of your tools, and the
methodology for validating what you have done in order to be able to
apply it. As we go more toward the scientific discipline of software en-
gineering, we need to have a bit more of this fundamental, basic, scien-
tific training so people who come from diverse backgrounds — not
necessarily scientific ones — have some exposure to this piece of
methodology. | have noticed that computer scientists who come from
different backgrounds — mathematics, physics, economics, philosophy
— approach certain classes of problems differently. There is a distinct
gap there.

Habermann : 23

David Wortman: | have two comments. First, in spite of our best
intentions, it is often difficult to direct students to take the broadening
courses we would like them to take. Unless you have a heavily man-
dated curriculum, the students can find countermeasures to avoid
courses.

Second, many of the proposed curriculums don't calibrate well against
where we traditionally think the effort goes in large software systems.
Statistics show that, in large systems, half the effort is spent in main-
tenance, yet most curricula are light on maintenance. Similarly, a lot of
effort is dependent on documentation, but curricula are light on
documentation. And in many systems a lot of effort is spent on interface
design — often half the code is the input and the output interface. That
involves not only computer graphics, but also a lot of human factors in
order to understand the interface. It's something that isn't covered very
comprehensively in the curricula we are examining.

Mary Shaw: | will reply to David’s first comment. Strong advising is
needed. An advisor who is looking out for the student and exercising an
advisor's responsibilities knows when a formal logic course in the
Philosophy Department is being used to finesse a breadth requirement.
And as for Peter’s related remark about some students really digging in
their heels, some really do learn better and others just dig in their heels
because they don't think they like it.

Ed Smith: Underlying the discussion is an assumption that, somehow,
engineers producing hardware are doing a much better job today than
engineers or programmers producing software. Is there a difference in
curiosity level? What is it that, after four years in a bachelor’s program in
electrical engineering, for example, that produces someone who has a
set of attributes different from someone enrolled in a software engineer-

ing program? Can we assume that hardware engineers do a better job
than software engineers?

Fred Brooks: When | moved from the engineering half of a project to
the software half of the same project, | found that the underlying building
disciplines-were-radically-different-—There was an engineering discipline

24 Opening Discussion

in place whereby a prototype computing machine could be debugged on
a four-shift, around-the-week basis, with a 10-minute handover between
successive shifts. The new shift could pick right up and continue with
the debugging right where it was. How many software project teams
can do that?

Ed Smith: That may be the visibility.

Fred Brooks: Yes, but it also has to do with having an established set
of engineering disciplines. Moreover, there is a difference in the ex-
perience of the practitioners. If you look at the hardware shops, the
average age of the professionals is greater from that in programming
shops.

Jim Collofello: | think another part of the problem is the complexity of
the effort given to it.

Ed Smith: You must reach a point where you feel as though you have
intellectual control over what you are doing. There is a certain decom-
position process that has to take place in either one.

Jim Tomayko: | was talking the other day with a civil engineer who is
teaching a graduate-level, computer-based course at Carnegie-Mellon.
He told me that the bachelor's graduates are very good at designing
modules, but they can’t produce the larger product. It made me ask
myself how they learn to design bridges. So, | think Ed’s point is a good
one in the sense that the hardware engineers not only have a more
mature discipline, they also have more mature people hanging around
to learn from and work with. When you think about it, the oldest
software engineers are now the youngest executive vice presidents of
software engineering consulting firms — and there isn’'t the same kind of
continuity in that.

Dick Fairley: | have both a bachelor’'s and master's degree in electrical
engineering and my greatest disillusionment in electrical engineering is
that none of the theories ever worked in practice. Electrical engineers
have their problems, too.

Habermann 25

Mary Shaw: To follow up on Jim's comments, my impression is that, by
and large, most civil engineers don’t design bridges. The few very sin-
gular, very conspicuous bridges are designed by the very few bridge
experts and the rest are routine modifications of standard designs. In
Pennsylvania we have a recognized, generic definition for bridge
designs in which you select a dozen or so parameters for things like the
number of lanes of traffic, elevations, traffic flows, and so on. The
bridge design is then cranked out automatically, but it is hedged about
with requirements that the design be signed off by a registered en-
gineer.

This simplifies the search of the design space so you can rapidly
generate acceptable designs and select from among them based on
your criteria. The effect is that the engineers in the bridge business
don’t design bridges from scratch. They design them by very substan-
tial reuse of prior designs. Design information and the knowledge about
good, adequate, functional — but not great — design is systematically
encoded for reuse. That is a lesson we should attend to carefully.

Dick Thayer: The other day a colleague of mine pointed out that when
we teach software engineering, we preach that software should be
developed and managed like hardware. Yet when we asked the
hardware (i.e., electrician) engineering teachers how they teach
hardware engineering, the subjects of life-cycle development, project
management, and analysis before design are not mentioned.

Dick Fairley: But your students don’'t know that. As Bill Wulf said, you
are telling the perfect lie.

Mary Shaw: What do the academic engineers in the engineering
departments tell their students about mill practice?

Dick Thayer: | don't know the answer to that one, but | know we spend
a lot of time with the little pieces and parts.

Mary Shaw: It is my impression that, in practice, civil engineers do a
reasonable amount of advance performance layout and material
analysis and the collection of things that we preach.

26) Opening Discussion

Gordon Bradley: We ought to separate what people do in education
from what people do on the outside. In getting my undergraduate en-
gineering degree, | took only one design course; the rest of the time was
spent in doing mechanics. We were not expected to design something
immediately. An architect doesn’t get to design a building the first year
out.

Civil engineering or architecture isn't a field like software engineering
where you declare yourself a software engineer with no academic back-
ground. We hear the complaints that when students go out, they don’t
know how to work in teams. They don’t know how to design. They
don't know the politics. We shouldn’t expect 22-year-olds to know those
things. Universities teach hard things, integrated things, very well.

| absolutely agree with Fred. We want an integrated view of things in
the curriculum. Wang Institute does this. But the notion of modules in
an academic, intellectual curriculum is what | could call a category error.
You can put a thing called curriculums into the category of things that
can be reduced to modules. However, we cannot modularize education.
We cannot modularize the core. We want to teach people how to think
like software engineers — and that is a long, integrated process that
cannot be broken up into one-day modules or pieces.

Mary Shaw: The role of design in undergraduate engineering education
has a long and mixed history that varies from university to university. In
the 50’s or thereabout, when engineering education was substantially
revamped, Carnegie-Mellon added a significant design component to
the curriculum in conformance with the Carnegie Plan. It was well
received, both by students and by employers, because it was backed by
a large collection of courses that seemed reasonably effective. Those
courses proceeded as an architecture studio might proceed: you
present the problem, looking over the shoulder of the students as they
attempt to solve it. But, it came across to the engineering community as
a soft discipline. As engineering proceeded, more and more factual
things, with equations behind them, came into practice, and there was
increasing pressure to add these to the curriculum.

Habermann 27

The effect of this has been a gradual erosion of the design component.
| suspect that there is some version of that history at each of your
schools. | don't take that as an indication that we should omit or neglect
design. A substantial part of what software engineers do is design. In
software engineering they probably do it earlier than in electrical en-
gineering, and, therefore, the need is greater.

Gordon Bradley: It's possible that it went away because a lot of the
experience was a single individual at a single university.

Mary Shaw: When the great designer stops teaching the course, it is
hard to transmit that course to another instructor.

Gordon Bradley: That's right. When the Frank Lloyd Wrights go away,
the idea of teaching architecture goes back to the tried and true.
Universities do know how to teach some things very well. We only
seem to be able to teach design with great designers.

Fred Brooks: We should at least teach it with experienced designers.
My chemical engineering chairman friend says, "We do not hire green
Ph.D’s to this faculty. They must have worked in a chemical engineer-
ing industrial environment before we would consider them as teachers
at all." | would propose that for a software engineering program, as well.

Dick Fairley: | think in the university, the analytical will always drive out
the synthetic. Analysis will always drive out design. And in the long
scheme of the history of what universities are about, that is probably
appropriate. The point is that you need to distinguish between the goals
of professional graduate education and those of the universities. Given
the goals of universities, professional graduate education may not be
possiblé unless you have a separate school for software engineering —
someplace where that can happen apart from the normal reward struc-
ture of the university, in the same way that medical and law schools are
set apart.

Nico Habermann: Drawing to a close, | think we can conclude that we
have many thoughts and opinions about our discipline. It isn't clear
what will emerge, but these discussions are useful. There is still a lot of

28 Opening Discussion

room for different opinions and we welcome the possibility to influence
each other’s thoughts on this subject.

Section 1l
Part 1
Software Engineering Principles

The papers in this section generally present a broad view of software
engineering and of software engineering education. They offer fun-
damental parts of or structures for a software engineering curriculum.

Gordon Bradiey, Dick Fairley, Peter Freeman, Walt Seward, and Ed
Smith present particular perspectives of the goals and organization of a
software engineering program. Bob Glass describes software engineer-
ing by contrasting it with computer science. Bill Richardson categorizes
the important problems in software engineering that a curriculum must
address.

Vic Basili, Nico Habermann, and Bill Riddle identify specific aspects
of software engineering that they consider essential: experimentation,
environments, and technology selection. Bill Wulf presents a case for
breadth in the curriculum, rather than concentrating on a few specific
methods.

The Experimental Aspects of a
Professional Degree in Software Engineering

Victor R. Basili
University of Maryland

Abstract. Software engineering needs a support mechanism to aid in
the transition of research results into practice. Such a mechanism for
providing education, training and practical experience in software en-
gineering could be provided by a special degree program: a Master of
Software Engineering (MSE). The key to such a curriculum is the
establishment of the equivalent of a teaching hospital through various
software development organizations: a teaching software engineering
laboratory. Combining classroom education with skill development,
the professional software development laboratory will use the latest
techniques and tools, and the practitioner will have the opportunity to
gain experience in using them under the supervision of experts.

Research results must be organized in a systematic way using well
defined methods and tools before they can be applied in a practical way.
Practitioners must be educated, trained, and have experience in apply-
ing these techniques if they are to be used effectively. Thus educational
programs must act as the bridge between these research advances and
their successful transition to the wider audiences that can make use of
those results. The educational process should include an understand-
ing of the underlying theory of the discipline, the training in the use of
the associated methods or tools, and the opportunity to develop skills in
their use. Without these three components, the technology cannot be
transposed into competent, standardized practices [110].

Software engineering is in desperate need of a support mechanism to
aid in the transition of the research results into practice. There is too
much ineffective and inconsistent use of the methods and tools avail-
able, too little evaluation of their effects, and too little refinement and
adaptation of the techniques themselves.

These methods and tools of software engineering must be studied,
applied in a laboratory setting, and skills developed until the practitioner
becomes expert in their application.

Basili 31

A mechanism for providing the education, training and practical ex-
perience in software engineering could be provided by a special degree
program, a Master of Software Engineering. There are a few programs
with similar aims already in existence, e.g., the program at Imperial Col-
lege in London, the program at Wang Institute of Graduate Studies, and
the program at Seattle University.

It is important for the educational needs of the software community
that a new, standardized professional degree be created; a Master of
Software Engineering, along with the specification for a certificate for
support roles in software engineering. These degrees and certificates
should represent the structure of a new profession of software engineer-
ing. The key to such a program is access to experimentation with the
methods and tools that must be provided the participants in order to
gain proficiency in their application for different problem domains in dif-
ferent environments.

The medical profession provides a useful analogy for this kind of
education. Software engineering stands where medicine stood years
ago, on the threshold of university education. Today the profession of
medicine has a structure of position and practices that permits many
educational institutions to participate in training personnel for the profes-
sion, not for individual organizations. For example, a surgical team is
put together from people educated at different institutions in different
specialties, of surgery, anesthesiology, nursing, radiology, etc. Such
terms are defined by the profession, not by the individual hospitals, with
a high degree of interchangeability among personnel of the same
speciality.

In contrast, software teams today are universally ‘home grown,’ their
activities are defined by their organizations, often by their team leaders.
As a result, there are few real standards of proficiency. It is well known
that people holding comparable jobs in software differ in productivity by
a factor of ten. 1t is less well known that software teams with com-
parable assignments also differ in productivity by a factor of ten. The
advent of university education in software education will create stan-
dardsrof proficiency whichrwill-permit organizations to recruit or procure
professionals of more certain productivity.

32 Experimental Aspects of Professional Degree in SE

The foundation of the medical profession is the medical degree — a
professional, not a research degree. Although medical research goes
on, it is the function of specialists, typically PhDs, not MDs.

In the same way the foundation for software engineering will be a
professional, not a research degree, the MSE. The MS and PhD in
computer science will still be the basis for computer science research.
But the MSE will be the basis for the practice of software engineering.

The MSE has quite a different purpose than the MS and PhD in com-
puter science. The objective of the MSE is consistent, competent prac-
tice in software engineering — software development in all its phases,
usually in multiperson, possibly multiorganization, arrangements.

The key to such a software engineering curriculum would be the es-
tablishment of the equivalent of the teaching hospital through various
software development organizations, a teaching software engineering
laboratory. Such organizations need to provide a form of prototype
laboratory setting for the use and refinement of software techniques
where software engineering students can have the opportunity to learn
and apply the studied methods and tools, measure and evaluate their
effect, and refine them for the particular applications at hand.

These organizations might be supported by industry or government.
Candidates might be such existing organizations as the Software En-
gineering Institute or the Software Productivity Consortium, or any or-
ganization whose charter involves the development of quality software
and the advancement of the field of software engineering. Such an
organization, in affiliation with the computer science department of some
major university, can create a teaching software engineering laboratory
that will provide MSE degrees. One of the constraints is that the results
of the efforts must be available for public consumption and admission
must be open to the public.

Results of the various practice activities, e.g., designs for certain
classes of problems in a particular design language, the statements of
the requirements for some applications, or the mechanisms for software
evaluation and assessment, need to be recorded and taught in the cur-

Basili 33

riculum. They can become standardized and passed on to new genera-
tions of software engineers to be further refined. The existing body of
knowledge at any time can be recorded and used in the training
process.

As an example of a program, the degree might be based on a two
year program, consisting of a mix of courses in the first year and profes-
sional experience and skill development in the second year at the af-
filiated organization. The course requirements would be twenty-four
credits of course work in the department consisting of twelve credits in
general computer science courses (e.g., Programming Languages, Sys-
tems, Arificial Intelligence, Data Bases) and twelve credits in software
engineering specialization (e.g., Requirements and Specification,
Design and Development Technology, Software Management, Models
and Metrics for Software Management and Engineering). The profes-
sional experience and skill development would involve working in the
software development laboratory, and managing, developing and
evaluating software projects under the tutelage of one of the profes-
sional software engineers employed by the teaching software engineer-
ing laboratory and associated with the university.

The curriculum will clearly evolve and change as the technology
evolves and changes so that it will always keep current with the latest
and best ideas. This would be the advantage of associating the
program with a University. The program can also evolve to a variety of
specialities in the various aspects of the discipline, e.g., management,
requirements.

The goal of the program would be to combine classroom education
with skill development. Since much of software engineering expertise
must be learned actively and skills developed by experience, a profes-
sional software development laboratory will be an ideal place to practice
those skills. It will be using the latest techniques and tools, and the
practitioner will have the opportunity to gain experience in using these
techniques and tools under the supervision of experts. The students will
be able to fine tune their skills and become experts themselves. At the
same' time the teaching software engineering laboratory will gain from

34 Experimental Aspects of Professional Degree in SE

the use of these bright and capable students in the development of the
various tools and prototype systems.

The program will create a set of highly qualified software engineers
who will become key managers and developers of software. It is in this
way the needs of the software community can best be served since the
degree deals with the long range solution to technology transfer.

Acknowledgement: The idea of a professional Master's degree in
Software Engineering was first brought to my attention by Professor
Harlan Mills, and many of the ideas presented here have been in-
fluenced by his vision of such a program.

Cognitive Science View of Software Engineering

Gordon H. Bradley
Naval Postgraduate School

Abstract. The present foundations of software engineering are
reviewed and found to be inadequate for an effective theory of
software engineering. The properties that a foundation (or theory) of
software engineering should have are developed. The present and
possible future relationships between cognitive science and software
engineering are explored. A cognitive based perspective on software
engineering is outlined that offers the possibility of a coherent foun-
dation for the field that will allow an ambitious and effective research
agenda.

Background

In all the years that | have taught software engineering, | have never
hidden from my students or my colleagues my low opinion about the
body of knowledge called software engineering. | don't think that the
software engineering literature provides a vocabulary or organization to
adequately describe the existing software processes much less provide
a basis to think about the field or to improve the state of the practice.
The most serious problem that results from this inadequate intellectual
foundation is that we have not been able to define a clear research
agenda nor identify an effective research methodology to advance our
state of knowledge [note 2].

In these years, | have learned much about the art, science and practice
of software development and maintenance and have become even
more enthusiastic about the production of software. Developing
software is great fun, and | have become more productive as | have
continued to read, teach and struggle with the software engineering
literature. However, despite the fact that | have become more
knowledgeable about and more effective developing software, the field
of software engineering has not provided an adequate let alone inspired
framework to organize my knowledge, experience and thoughts about
the software process. It is not an effective body of knowledge to identify
and evaluate effective mechanisms to advance the state of the practice
or to teach students about software production.

36 Cognitive Science View of Software Engineering

In my lover's quarrel with the software engineering field, | have
struggled with the question of how we could develop an adequate and
precise vocabulary, a viewpoint, a framework and ultimately a foun-
dation that would help us to identify researchable questions and to in-
spire us to resolve them. | have tried to identify what attributes such a
result must have. | believe that such a view will incorporate into its core
assumptions the quantities of what Simon [89] called the "sciences of
the artificial." Our research paradigm will reflect that we study objects
that are synthesized to attain goals and to function — objects that are as
they are because they have been chosen rather than as they must be to
satisfy natural laws. As such we will be more like one of the social
sciences than one of the natural sciences. Notice that | decided this
without reference to the fact that current development of software is
mainly human based. The changing division of labor between man and
machine is based primarily on economic considerations, but this division
of labor does not change in any way the property that software is syn-
thetic rather than natural.

The present software engineering literature is almost totally descriptive.
That is, it documents the state of the practice by describing how
software is now developed. This approach allows only a limited
perspective on how the process could be changed. | do not believe that
it will be possible to induce general results with a bottom-up atheoretical
research approach [note 3]. This is not only because the processes are
so complicated and so detailed that they can not be effectively studied,
but more fundamentally because a study of synthetic objects by bottom-
up approaches will be incapable of distinguishing among what must be,
what is because of choice (design), and what is accidental (as it is be-
cause it had to be something). | believe that like other sciences in their
formative stages, progress in software engineering will result from a top
down strategy to build theories (or models) that abstract properties of
the complex reality. This approach will admit (indeed require) positing
goals and intentions. In this approach, theory precedes observation,
indeed theory suggests hypotheses which constructs a position that
suggests experiments to evaluate the hypotheses. The observations
then support or reject the hypotheses which leads to gaining confidence
in or to redefining (or fixing or rejecting) the theory. This will be the basic
research methodology.

Bradley 37

This view leads me to analyze all the experimental literature by iden-
tifying a theory, an hypothesis and a result. | then say if "fill in the
theory" is true, | would expect "fill in the hypothesis" to be observed, in
the experiment | observed "the result". As you know, in at least 95% of
the experimental software engineering literature there is no stated
theory. For these papers | identify the best theories that | can based on
the discussion, experiment, results and conclusions, and then | fill in the
blanks. Do that for a few months or a few years and you will be as
discouraged as | about the software engineering literature. In most
cases there does not appear to be any reasonable theory and related
hypothesis that the experiment is to shed light upon. In many others the
authors draw conclusions from the results that are unrelated to any pos-
sible theory that the experiment could support.

Must There be a Theory of Software Engineering?

Above, | decry a lack of foundation (or theory) for software engineering.
Before | try to convince you that | think | know a good direction to go to
build such a theory, you might ask me why | think that there exists such
a foundation for software engineering. We are here to work on a cur-
riculum for an academic study of software engineering: upon what
should we base the act of faith that brought us here?

Since many software engineering papers, research proposals and sym-
posia begin with a discussion of how much money is and will be spent
on software and how important software is to our economy, defense and
intellectual development, we might ask if the expenditure and the impact
on society alone justifies the curriculum, academic departments,
research institutes, and research and development expenditures
devoted to software engineering. This argument is not convincing; there
are many problems in our world that involve more money and more
problems and more impact on people than software and yet do not have
a specific academic field devoted to them. For example, alcohol and
illegal drugs involve more money and jobs, and impact more people
than software. The computer industry just passed the automobile in-
dustry in terms of dollars, but automobile engineering existed as a cur-
riculum_for only.a few years.in.a few universities (similarly for railroad

38 Cognitive Science View of Software Engineering

engineering that was an option of mechanical engineering in the early
part of this century).

A second argument is that there must be a field called software en-
gineering because there is a demand for software engineers in industry,
and therefore, it must be possible to build a theory of software engineer-
ing to teach. | call this "l teach software engineering, therefore it exists."
Counterexamples abound; there are education departments all over the
country with scant evidence of a theory of education. The recent intro-
duction of computers into elementary school classrooms illustrates this
lack of theory. We know from controlled laboratory experiments that
computer based rote learning is more effective than human instruction.
The experiments using computers in the classrooms to teach rote learn-
ing have been declared a failure. Either teachers don't know what they
are doing in the classroom or (what seems to me more likely) the com-
puter scientists and education professors don't have an adequate
enough model about what really goes on in a classroom to build a sys-
tem that.can help students learn [note 4]. Business schools, professors,
research programs abound with even less evidence that anyone knows
what a foundation might be for the subject.

Generally, academic disciplines can justify themselves in universities
only if they have an important problem and a set of approaches and
research methodologies that have been demonstrated to lead to sig-
nificant results. For example, despite the fact that there is little money
and few jobs in linguistics, there are more linguistic departments in the
United States than software engineering departments. Linguistics has a
set of theories and models and a scientific approach that has led to a
better understanding of language.

The bottom line is that there are no imperative reasons of the type
"there must be an intellectually sound field of study for software en-
gineering because...." Any proof of existence must be by construction;
we must show the foundation of the field and must demonstrate that its
use produces results that are not otherwise available.

Bradley 39

If the essay so far has been at all convincing, then | have gotten you in a
good frame of mind for what follows. Either | will convince you that |
have a way to save software engineering and with it the livelihood of the
software engineering academics or we will all go home believing that
software engineering will quickly follow railroad engineering, automobile
engineering, urban studies, etc. and that all the academics should
quickly find jobs in industry or other academic fields.

What Is the Software Process?

The first step is to clearly define what the foundations of software en-
gineering is a theory of. The present approach to software engineering
limits the object of study to a description of the current practice with an
emphasis on work products. An approach that hopes to be a foundation
for not only what is but also for what might be needs a broader perspec-
tive. 1 will call this the software process. The software process captures
information that is then transformed and transmitted across space and
through time. The process transforms (e.g., requirements to specifica-
tion to design to HOL to machine code) and transmits across space
(e.g., across a desk, a room, an organization or to a subcontractor) and
through time (e.g., to a requirements group to designers to program-
mers to testers to maintenance people).

An important characteristic of this process for large projects is that the
amount of information is too vast to be mastered or even known by a
single individual. Also the representation of the information must stand
indépendent of any and all particular individuals. This requirement that
the totality of information which at any time resides largely within the
minds of individuals must be preserved as individuals come and go is in
my judgment the single most important distinction between systems that
are developed and maintained by a single individual or an unchanging
small group and those that software engineering is concerned with. |
believe that this property is the single most important determinant of the
difficulties we experience with large projects. Even if we could design
large projects with small modules with few interactions and thereby
decompose the information, the requirement to represent the infor-
mation.completely.independent_of. particular individuals makes large
projects fundamentally different (and harder).

40 Cognitive Science View of Software Engineering

Does an information view of software capture the dominant software
activities? Two studies surveyed how software personnel spend their
time:

Programmers at Bell Labs [29]

reading programs and manuals 16%
job communications 32%
writing programs 13%
personal 13%
miscellaneous 15%
training 6%
mail 5%

Maintenance personnel at IBM [34]

study requests 18%
study documentation 6%
study code 23%
update documentation 6%
implement 19%
test 28%

Maintenance is the most costly phase of the life-cycle; the first three
maintenance categories that could roughly be called "understanding”
account for roughly half of the personnel time. For projects where main-
tenance costs dominate, roughly half of the life-cycle costs are as-
sociated with reading and understanding code, documents, manuals
and other software products. Other data shows that the number of
words of documentation per line of code increases sharply with problem
size; this suggests that the production and subsequent reading and un-
derstanding of software products is not only the most dominant activity
in software production but is also a factor in the nonlinearity of effort with
scale.

The software process creates, transforms and transmits information.
Software engineering is the creation of the various notations needed to
capture and transmit this information over time and space and the
development of techniques to transform this information from one nota-
tion to another. With some notable exceptions (e.g., the translation of
HOL to-machine code); theroverwhelming bulk of the transformations of

Bradley 41

information is done by humans with minimal help from machines. The
dominant activity is input to humans ("understanding”) with relatively lit-
tle output (modify code, write documents). Most of the energy that is
pumped into the system is consumed by the humans and most of this is
lost as they leave the system [note 5].

What Is Cognitive Science?

Cognitive science is a recent coalescence of several approaches to the
study of the mind. The original questions were first studied by the an-
cient Greeks. The modern viewpoint focused about 30 years ago; the
term cognitive science has been used for the past decade. Cognitive
science is not so much a single academic/research field as a group of
researchers in several disciplines with a shared set of problems, as-
sumptions and biases. The core disciplines are cognitive psychology,
artificial intelligence, philosophy of the mind, and linguistics with some
contributions from anthropology and neuroscience. By no means all or
even most of the researchers in the component fields regard themselves
as cognitive scientists; in fact, rival points of view are active in each of
the core disciplines.

For a field so young, cognitive science is lucky to already have an excel-
lent intellectual and personal history of the field in Gardner [45]. For a
reader who is acquainted with the basic issues and problems in one of
the component fields, Gardner's book is an outstanding description of
the web of intellectual connections among the component disciplines.
Unfortunately it is not as effective as an introduction for the reader with
no prior knowledge in the field. A simple introduction is not possible
because the problems are hard, the concepts are tricky, and there is a
long history of false trails and tempting fallacies. My own introduction
was via reading in cognitive psychology including [19], [72] and [89]. My
seminar (CS4510 Cognitive Science and Computer Programming) in-
cludes cognitive psychology with some readings in Al and philosophy.

42 Cognitive Science View of Software Engineering

Gardner [45] lists five key features that characterizes cognitive science:

1. Cognitive science believes it is necessary to assume the
existence of mental representations. They believe that a
scientific field can successfully deal with abstract notions
like mind, thinking, etc.

2. The computer has been a strong influence on cognitive
science. The information processing model of the brain is
modeled after a Von Neumann machine.

3. Cognitive science feels that in the short run it is necessary
to factor out whenever possible emotion, culture, history
and other individualistic traits.

4. Cognitive science has a strong belief in interdisciplinary
studies.

5. The classical Greeks’ philosophical problems are ac-
cepted by most cognitive scientists as part of their intel-
lectual history.

Cognitive View

As described, the activities of software development and maintenance
are virtually all cognitive. That is, they are involved with the process(es)
of knowing or the act of knowing and could be described with terms like
perception, imagery, retention, recall, problem solving and thinking [note
6]. Some of the activities are carried out by computers, so they might
be called machine cognition. As described, contemporary software ac-
tivities are done mainly by humans; so they involve human cognition.
The contemporary study of cognition provides a unified view of both
kinds [note 7].

A cognitive view of software engineering would assume that as human
factor researchers are designing physical artifacts that are to be com-
patible with human senses, software engineers are designing artifacts to
be compatible with human cognitive processes. The information is held
mainly by people. When a critical maintenance programmer leaves a
project, the project has less information until his replacement has fully
mastered his job. The code and the documentation contain information
that is used in part to regenerate the information that the departed
worker had. To view the non-human artifacts = the exclusive objects of
study with the humans treated as black boxes is to ignore the bulk of the

Bradley 43

information and energy flows and to lose sight of the motivations for the
design of the system.

A cognitive view does not accept the code or the processes generated
by the code as the principle objects of study. For one, the code is static.
The coding object of interest is really the thousands and millions of
meaningful variations of code. A given instance of the code contains
little information about what variations are possible let alone meaningful.
"To understand" the code means to be able to conceive and eventually
produce any of the other possibilities. Secondly, although in principle we
could automate the software production from specification through to
code, in practice we do not seem to be able to build such a machine for
large problems; and present attempts at small scale do not exhibit the
"understanding” that would allow it to make minor changes without
"replaying” the whole process.

Cognitive Science and Software Engineering

What are the present and possible future relationships between cog-
nitive science and software engineering? Clearly software engineering
is not and will not become a part of, or a major contributor to, cognitive
science because the goals of software engineering do not include any
attempt to resolve the long standing epistemological questions on the
nature of cognition. On the other hand, software engineering will be the
beneficiary of advances in cognitive science, but even more | think that
computer programming and software engineering will become the basic
experimental science upon which cognitive science will rest. That is, |
believe that the study of programming by individuals and the develop-
ment of systems by software engineers will become the basic model for,
and example of, the study of cognition. Among the human tasks for
possible intense study by cognitive science like reading, language un-
derstanding, stacking blocks, solving cryptarithmetic puzzles, why do |
think that computer programming will become the central problem?

1. Programming is about the right level of difficulty; reading
and language understanding are too tough and the work
on cryptarithmetic puzzles shows it to be too simple.

2-Becausesitsissbased-onstransformations of formal symbols,
it is easy to exclude the considerations of emotions, cul-

44 Cognitive Science View of Software Engineering

ture, history and other factors that virtually all cognitive
scientists, for either practical or philosophical reasons,
want to ignore for the short run.

3. Software development is partially computerized; the
trends to automate more of the software task allows excel-
lent opportunities to gather data. Programmers will be-
come to cognitive scientists what rats were to generations
of behavioral psychologists.

4. Compared to other engineering design tasks, software
development can involve more levels of abstraction and is
less limited by physical attributes.

5. There is a large and growing expenditure on software that
makes money for experimentation available and suggests
economic returns from increased understanding of the
task.

6. The scale and modularity of large software development is
just about right when compared to a single individual. The
modularity allows small one person tasks to be studied.
The scale of the whole project has complexity of the order
of magnitude of a single individual.

Perhaps the most important reason that the study of software
(especially large projects) will be so important for cognitive science is
that it forces a sophisticated view of the differences between knowledge
(facts) and information. The machine allows us to easily and quickly
generate an absolutely staggering amount of data. We can get a list of
all variables, modules, and interconnections; and we can build program
graphs and do variable analysis. In addition to this static analysis, we
can simulate the process and we can obtain output, traces, execution
profiles and other dynamic measures. All this data can be economically
gathered, and if stored properly, it can be economically retrieved. Yet,
when that is all done, there remains a clear distinction between data and
understanding. 1t is this mountain of facts together with experiences
(human experiences) and intentions that yields the capacity for purpose-
ful action that | call information. Facts plus X yields information, which is
the capacity for purposeful action. 1 claim that X is clearly cognitive, and
I am not convinced that X can be replaced by some formal symbol
process like production (or expert) systems.

Bradley 45

Note that this analysis lays clear the fundamental hypothesis of expert
systems approaches to software (and other fields): namely that cog-
nition is computation and that facts organized into rules yields infor-
mation. Cognition is firing production rules and the apparent complexity
of what we call cognition and understanding are largely illusions
produced by the action of a very large number of rules (and that if Al
researchers only had bigger and faster computers they could
demonstrate behavior that we would call intelligent).

How might software engineering benefit from the study of computer pro-
gramming and software development by cognitive science? First, | don't
think that cognitive science will make any direct contribution to our
methodologies. That is not their goal; they want to study cognitive
processes by means of studying programmers. We should not expect
otherwise; after all, after a half century of maze work by behavioral
psychologists there is no definitive evidence that present day rats are
any smarter than their turn of the century compatriots. Their work in
cognitive science will help us in another more profound way. They will
help form and sharpen our vocabulary to talk about and think about
software engineering. They will suggest to us an evolving conceptual
framework to clarify our thinking and allow us to develop a better
research agenda. And — getting back to the purpose of this workshop
— they will help us develop a vocabulary and organization that will allow
us to teach the theories and techniques of our field more effectively.

Examples of How Cognitive Science
Will Help Software Engineering

What evidence is there that cognitive science will help us develop a
foundation for software engineering? My present list is short; each item
is underdeveloped with more promise than substance. But even this
tentative beginning has gotten me excited about software engineering
research and has helped me think more clearly and to teach more effec-
tively.

1. Knowledge domains - Brooks: [19] Brooks presents a theory of the
organization of the knowledge acquired by a programmer who under-
stands a program. The programmer’s knowledge is described as a suc-

46 Cognitive Science View of Software Engineering

cession of "knowledge domains” that form a bridge between the
problem and the final executing program. Each of these domains (for
example, problem, algorithm, programming language, etc.) "consists of
a closed set of primitive objects, properties of the objects, relations
among objects, and operators which manipulate these properties and
relations” [19]. This theory involves two kinds of information — the first
is about things within a particular domain; the second involves trans-
lating information in one domain to information in nearby domains. The
second type is clearly harder and more difficult to automate, and yet, it
is done effectively by humans. This analysis gives a clear view of what
is happening in the software process. The present software engineering
view focuses on the work products (objects within a domain) and is
largely blind to the processes (mostly human) that translate a work
product in one notation to a work product in another notation.

Perhaps more importantly Brooks shows the utility of a theory; he uses
the theory to make predictions about the effectiveness of documentation
and then compares it to experimental data. This general procedure
leads to an acceptance, rejection, or modification of the theory. The
software engineering literature is long on experiments, but these experi-
ments are not as useful as they might be because of the absence of
theories.

2. Memory as reconstruction - Neisser: [72] The classical view of the
human memory is that one retains memories as slightly faded copies of
sensory experiences; they exist always and on occasion are aroused.
Neisser’s view is that we do not recall memories; rather we reconstruct
them through an active (not passive) process and that this reconstruc-
tion is based on "traces" of the experience that we retain. More
provocative (at least to me) is Neisser's proposal on the character of
these traces: "The only plausible possibility is that it consists of traces of
prior processes of construction” and "we store traces of earlier cognitive
acts, not the products of those acts" [72], p. 285.

This leads me to consider software documentation from a new prospec-
tive. Typically documentation has not conferred significant benefits on
the writer-or the reader: Current:documentation has the classical view

Bradley 47

as its basic premise: external memories (cognitive science jargon for
memories like notes that exist outside the mind) are the things that we
are trying to remember. Neisser says that we don't remember things
from internal memory this way; so | ask if we should build external
memories (documentation) in this way. We need to view documentation
as being dynamic with an entirely new concept of dynamic. Documen-
tation should be constructed to help humans in the reconstruction of the
internal state called "understanding."

Documentation (unlike good literature) is boring to write and read be-
cause we have so little insight on how people construct facts to under-
stand technical material. We should devise more "intuitive" notations for
documentation. By intuitive | mean the nonverbal and partially verbal
knowledge about how the software really works. This knowledge can
then be used by the reader to construct or reconstruct an understanding
of the software. With high resolution dynamic displays we have a new
medium in which to rethink our approach to documentation. Together
with a more sophisticated view of human memory processes we may be
able to make some significant progress on documentation.

3. Schemata (context, environment) - Neisser: [72] Another aspect of
Neisser’'s theory of memory is that the construction is not limited to the
object being remembered. We remember in reference to "frames of
reference” or "schemata." Neisser presents a detailed discussion of
why this view is supported by common sense and by some experiments.
We would like documentation that only tells the reader things that
he/she does not already know. This is difficult to achieve because
documentation is prepared for potentially many readers. This analysis
suggests we should think about on-line documentation where the sys-
tem has some knowledge about the state of the user's knowledge and
understanding. This suggests documentation systems that can use
some knowledge of the state of the user’s knowledge to determine what
and how much material to present. This is clearly an ambitious under-
taking. A more modest approach would eliminate from view some com-
ments but put their retrieval under the control of the reader. For ex-
ample, the comments and elaboration could be hidden behind the code,
the user would then display them if it was needed. This is not unlike a

48 Cognitive Science View of Software Engineering

spreadsheet where the formulas are hidden or a outline program that
shows lower levels of the document only if requested.

4. Programming as a learned skill - Sheil: [87] In an outstanding
review of the software psychology literature, Sheil attributes the
unimpressive results of the behavior research in programming to "the
results of sloppy methodology, of a poor choice of hypothesis from com-
puter science and of the considerable practical difficulty of investigating
complex behavior." He goes on to say the "basic problem is a fun-
damental misunderstanding of the nature of the programming skill." He
discusses two flawed views and concludes with, "More fundamentally,
programming is a learned skill, and therefore, what is easy or difficult is
much more a function of what skills an individual has learned than any
inherent quality of the task." By this he means that the expenrt
programmer’s skill is not exclusively or even primarily determined by
his/her innate ability nor is it based on some small body of expertise like
the syntax of a programming language. Rather the "the programmer’s
expertise is made up of an enormous number of interrelated pieces of
knowledge." Now this view will suggest the futility of setting up experi-
ments with a group of programmers, some doing a new technique and
the others not, and expecting significant differences. This also has im-
plications for the training of programmers and their support on the job.
Qur training and support must recognize that we need to support a
much larger set of facts for programmers, and the organization of these
facts may be different for each programmer.

One is struck immediately that the approaches to improving software
engineering suggested by this new perspective are harder than those
we have today. This seems right because we have always known that
the development of software was a task more sophisticated than the
intellectual tools we had to think about it. The harder and bigger
problems suggest multiperson, multiyear, well organized research ef-
forts; but the potential reward for a more sophisticated approach is cor-
respondingly greater.

Bradley 49

Conclusion

In my view the integration of a cognitive science perspective into a
framework for software engineering offers us the possibility of a
coherent foundation for the field that will allow a clear and more am-
bitious research agenda. Some of this "new view" has already been
developed by a few software engineering researchers with little or no
explicit mention of cognitive science; the explicit use of this viewpoint
will provide a vocabulary and organization to integrate this work. 1 think
it is premature to try to name this new view until it is more fully
developed. However, some aspects are coming into focus. We need a
better description of the software process. | think that the information
approach sketched here is a possible candidate. Any candidate must
clearly emphasize the transformation of information not just the products
and must not treat humans in the process as black boxes. As dis-
cussed, the new view should proceed top-down. This says that we must
build relatively high level models of the process and that we are going to
have to include models of human cognition. We are going to have to set
aside our engineer’s reluctance to deal with models of humans and with
models that rest on ill-defined concepts like thinking, design, remem-
bering and so on.

Another implication of the new approach is that we are going to have to
think about new dynamics of the processes. We will have to think about
documentation that grows and adapts to humans or other parts of the
system that are also changing. Our views on training and the support of
programmers will have to better recognize the nature of the program-
ming skill.

A final word about our enterprise here: as described, | think that a new
foundation of software engineering is needed and that a greatly im-
proved version is within view. | don’t think that a new organization will
be completed within the next several years, and like many of you | have
a software engineering class to teach next quarter. | think our time is
well spent clarifying the goals of a software engineering education, and
the effective approaches and techniques of our field. | am much less
comfortable with any attempt to impose a rigid taxonomy on the field or
to try to more carefully define our present vocabulary. Using a

50 Cognitive Science View of Software Engineering

Christmas tree analogy, | think we can agree on the shape size and
purpose of the tree. We can work on the beautiful decorations that we
have and are building, but we should avoid locking in on today’s struc-
ture for the limbs. In short, in preparation for a better and more effective
foundation for our field, we should do nothing that would tend to further
legitimize in any way the present framework.

NOTES

1. This is a preliminary version of an essay on the foun-
dations of software engineering.

2. One symptom of the inadequate research agenda is that
most, if not all, software engineering researchers are per-
sonally involved in the development of software. | don’t
think this is solely or even primarily because we want
hands-on experience. In a well founded field, researchers
pursue an agreed upon agenda that is related to, but not
identical with, what practitioners do. Another symptom is
that the literature tree in virtually all software engineering
subfields is shallow with many involving only one or two
papers and only one or two authors. The lack of a
coherent foundation makes it difficult to build on the work
of others.

3. | believe most of the experimental software engineering
papers should be characterized as bottom-up and ath-
eoretical. It is not simply the absence of theories and
models that provide a plausible mechanism or explanation
for the results; in addition, most authors seem to really
believe in black box experimentation and apparently
believe that it is incorrect methodology to a priori posit a
theory that would predict and explain the results. If they
were psychologists, we would call such an approach be-
haviorism.

4. With less theory and experience than education profes-
sors, | wonder how we will be able to design a "software
environment" or "software factory" that will generate posi-
tive benefits, let alone justify the cost of its development
and maintenance. This is surely a instance where
"nothing is more practical than a good theory."

5. From this perspective the development of large software
systems does not look that much different from other large
information intensive projects like developing a major
federal tax change. Public sentiment is translated into

Bradley

legislative intent, which is translated into tax code, then
into regulations, algorithms for computation, manuals and
preparation materials, interpretations and judicial rulings.

6. Cognitive scientists are no more able or willing to give a
definitive definition of cognition than we are willing to un-
ambiguously define module or user friendly.

7. A more controversial view held by a few is that there is
only one type of cognition, sometimes performed by
electro-mechanical devices and other times by organic
devices.

51

Software Engineering Education:
An Idealized Scenario

Richard E. Fairley
Wang Institute of Graduate Studies

Abstract. The ideal scenario for software engineering education in-
corporates a broadly based undergraduate program in computer
science, mathematics, science, social sciences, business, and
management; followed by one to two years of programmer-level work
experience; followed by a professionally oriented masters program in
software engineering; followed by a one to two year period of
professional-level apprenticeship; followed, for some, by training at
the doctoral level. Completion of each stage of the idealized program
qualifies the graduate for a corresponding level of duties and respon-
sibilities as a software engineer. This paper describes an idealized,
comprehensive program of software engineering education, and is
extracted from the technical report, "The Role of Academe in Software
Engineering Education,” TR-85-19, Wang Institute, October, 1985.

Many professions follow an educational model of broadly based under-
graduate programs (political science for law, biochemistry for medicine),
professional graduate level training (law school, medical school), and
apprenticeship (law clerk, intern) under the guidance of skilled prac-
titioners. This model seems appropriate for software engineering. The
ideal scenario for software engineering education thus involves a
broadly based undergraduate program in computer science, math,
science, social sciences, business, and management; one to two years
of programmer-level work experience; professional training at the
masters level; a professional-level apprenticeship; and, for some, train-
ing at the doctoral level. Some of the functions and skill areas required
of professional software engineers are itemized in Table 1. In most
cases, the level of maturity and sophistication indicated in Table 1 can
only be achieved through a combination of undergraduate education,
work experience as- a programmer, professionally oriented graduate
education, and a professional-level apprenticeship.

The most desirable preparation for a software engineer is an under-
graduate computer science major (including courses in computer en-
gineering, math, science, business and management) with a minor

Fairley 53

program of study in an application area; followed by one or two years of
work experience; followed by a master's program in software engineer-
ing, and concluded with one or two years of apprenticeship to gain ex-
perience in most, and preferably all, of the areas listed in Table 1. Fol-
lowing this, some individuals may wish to pursue advanced practitioner
training, or to pursue a career in research and teaching. Doctoral
programs in software engineering would provide these opportunities.

This ideal scenario is depicted in Figure 1. Appropriate courses at the
undergraduate level are listed in Table 2 and master’s level topics are
listed in Table 3. The structure of the master’'s program in software
engineering at Wang Institute is presented in Figure 2 . A detailed
description of the Wang Institute Master of Software Engineering degree
program is presented in the accompanying paper, "Core Course
Documentation: Master's Degree Program in Software Engineering,”
Wang Institute Technical Report TR-85-17, September, 1985.1

professional

software
B.S MSE h engineer
.S. exper apprenticeshi
u/g 2 years P grad pP P
program prgmr program advanced study
research
b doctorate
software
engineer

Figure 1. Ideal Scenario of Software Engineering Education

Table 4 presents the structure of a proposed PhD program in software
engineering. Doctoral programs in software engineering will be distin-
guished from doctoral programs in computer science by the emphasis
placed on methods, tools, and techniques oriented to the technology of
software development and modification, and by research endeavors

1To obtain'a'copy please write to'the author at the Wang Inst. of Grad. Studies, Tyng
Road, Tyngboro, MA 01879

54 SEE: An ldealized Scenario

such as experimental studies, case studies, and development of ex-
emplar software artifacts, in addition to endeavors that advance the
theory and methodology of software technology.

Discrets
Math

N LR

Formal L Programming Systems Management
Methods Methods Architecture Concepts
Soft Engr Elective Project | Project
Methods | I Management
Elective Project Elective

Il Il]|

Note: horizontal arrows denote
co- or pre-requisites

Figure 2. Structure of the Wang Institute Master
of Software Engineering Degree Program

Prerequisites to
the Program

The importance of programmer-level work experience and professional-
level apprenticeship in the education of software engineers cannot be
overemphasized. Much of the material indicated in Table 1 will be un-
appreciated by undergraduates who have no basis of experience to un-
derstand the importance or relevance of the topics. The need for
programmer-level work experience is analogous to the need for work
experience in business education: business curricula are, for the most
part, timely, appropriate, and important to modern society; yet, most stu-
dents in undergraduate business programs view the programs as easy
paths to bachelor's degrees. This is partly because of the "soft" (non-
quantitative) nature of much of the material in business curricula, but it
is primarily a result of the student’s lack of maturity and real world ex-
perience. After a few years of work experience, the material presented
in business schools is much more meaningful to students.

Fairley 55

Apprenticeship at the post-masters level is also important in the
development of professional software engineers. The need for an ap-
prenticeship in software engineering is similar to the need for an appren-
ticeship in architecture, law, and medicine. Newly graduated architects
do not design skyscrapers, law clerks do not argue cases before the
Supreme Court, and interns do not perform open-heart surgery. Yet,
new software engineers often find themselves in analogous situations.

Apprenticeship with a qualified mentor allows the apprentice to apply
various methods, tools, and techniques of software engineering under a
guiding hand, and tempers academic treatment of the topics listed in
Table 1 with the realities of the profession. A somewhat formalized
apprenticeship also provides an avenue for the apprentice to infuse new
ideas and new technology into the sponsoring organization. The ap-
prentice can experiment with, and demonstrate the feasibility of, new
ideas in a sheltered environment.

Some software engineers will have the desire and the ability to pursue
doctoral level training in software engineering. There are several paths
at the doctoral level: contributions to the theory and methodology of
software engineering, development of outstanding software artifacts, ex-
perimental studies involving human subjects, and significant case
studies of technological and/or managerial issues.

Doctoral topics in software engineering must pass the litmus test of
orientation to technological and/or managerial issues surrounding the
development and modification of software products. In many cases, the
nature of the emphasis placed on a topic will determine its suitability as
doctoral work in software engineering or doctoral work in computer
science. Currently, doctoral students who pursue software engineering
topics in computer science departments often distort their true contribu-
tions and emphasize minor theoretical points in order to satisfy the ap-
propriate criterion for computer science.

It is important to note that many research topics in software engineering
are not acceptable computer science topics (for example, development
of software.artifacts; experimental.studies, case studies); similarly, many

56 SEE: An Idealized Scenario

topics in computer science, such as theories of computational com-
plexity or abstract families of formal languages, are not suitable software
engineering topics.

Computer science and software engineering are distinct, but strongly
related disciplines — just as physics and electrical engineering and
chemistry and chemical engineering are distinct but related. The dif-
ferences in viewpoint and orientation to subject matter arise because
science and technology serve distinct intellectual, economic, and social
needs in modern society.

The career path for a doctorate in software engineering might be a
university career in research and teaching, or a career in industrial
research and development. The incentives and rewards in universities
and industry should encourage easy movement between the two
arenas. This would appear to be advantageous to all concerned parties.

Table 1. Functions and Skill Areas for Software Engineers

Requirements Analysis

Familiarity with the application area

Familiarity with analysis tools and techniques

Oral, written, and interpersonal communication skills

Functional Specification

Functionality, performance, design constraints, quality criteria, functional
interfaces

Ability to identify and specify appropriate abstractions, interfaces,

and constraints

Ability to establish quality and performance criteria

Familiarity with appropriate notations, tools, and techniques

Software Design

Thorough understanding of the hardware and operating system environment
Ability to decompose complex systems, specify interfaces, and document the
design using appropriate methods, tools, and techniques

Implementation

Familiarity with the necessary algorithms and data structures
Proficiency in the operating system(s) and programming languages(s)
used to implement the system

Proficient.coding.style to.enhance understandability and

modifiability

Fairley 57

Inspections, Walkthroughs and Reviews

Ability to effectively participate in inspections, walkthroughs, and reviews
Ability to function as a member of a team

Debugging and Unit Testing

Deductive and inductive problem solving skill

Familiarity with debugging and testing tools and techniques
Understanding of unit testing coverage criteria and ability to design test
cases to meet those criteria

Integration and Acceptance Testing

Familiarity with methods, tools, procedures, and techniques for integration
and acceptance testing

Configuration Management and Quality Assurance
Familiarity with tools and techniques

Ability to work with, and function as, configuration management and quality
assurance specialists

Preparation of Users’ Manual and Maintenance Guide
Written communication skill
Ability to work with users and technical writers

Software Maintenance

Familiarity with tools, techniques, and procedures
of software maintenance

Ability to perform emergency fixes and scheduled enhancement, adaptation,
and repair.

Ability to work with customers and organizational procedures for change control

Project Leadership
Ability to work within an organizational framework
Ability to plan a project and lead a team of five to seven programmers

Table 2. Topics in an Undergraduate Software-Oriented Curriculum

Computer Science
o Introduction to Computers and Computation
e Algorithms, Data Structures, and Structured Programming
¢ Computer Organization and Assembly Programming
o Computational Complexity and Analysis of Algorithms
o Computer Architecture
e Computer Logic and VLSI Design
¢ Language Translation

58 SEE: An Idealized Scenario

¢ Programming Paradigms

¢ Operating Systems

¢ Systems Programming

¢ Database Systems

* Scientific Computation

¢ Expert Systems Technology

¢ Computer Communications

¢ Real-time Systems and Programming
¢ Performance Evaluation

Math
¢ Calculus
« Differential Equations
e Linear Algebra
¢ Appropriate Discrete Math
¢ Probability and Statistics
¢ Symbolic Logic

Business
o Introduction to Business
o Micro-Economics
¢ Financial Accounting

Management
¢ Theory and Structure of Organizations
¢ Human Relations and Organizational Behavior
» Oral and Interpersonal Communication Skills

Software Engineering
» Software Analysis and Design Methodologies
» Software Development Tools and Techniques
» Problem Solving in the Technological Disciplines
* Team Project in Software Engineering

Table 3. Topics in a Graduate Software Engineering Curriculum

Technical Issues
o Computing Systems Technology
» Toolsrand: TechniquesiforUserRequirements Analysis

Fairley

e Practicum in Conducting User Requirements Analysis

¢ Preparing a User Requirements Document

¢ Applications of Formal Methods in Software Engineering
¢ Tools and Techniques of Formal Specification and Verification
o Practicum in Formal Specification and Verification

¢ Practicum in Rapid Prototyping of Software

« Survey of Design Methods, Tools, and Techniques

¢ In-depth Study of One or More Design Methods

¢ Practicum in Software Design

o Issues of Detailed Design and Coding Style

 Practicum in Detailed Design and Coding Style

e Practicum in Debugging and Unit Testing Techniques

e Practicum in Integration and Acceptance Test Planning
o Issues, Tools, and Techniques of Software Maintenance
e Conducting Reviews, Inspections, and Walkthroughs

¢ Development and Execution of a Test Plan

e Development and Execution of a Documentation Plan

o Format and Content of Software Project Documents

e Issues, Tools, and Techniques of Change Control, Configuration
Management, Quality Assurance, and Validation and Verification

e Standards, Policies, and Procedures in Software Engineering

Managerial Issues

¢ Organizational Structures and Management Concepts for Software
Engineers

o Customers, Contracts, and Business Plans

¢ Marketing and Distribution Considerations

o Lifecycle Models, Milestones, and Reviews

¢ Tools and Techniques for Planning a Software Project
¢ Practicum in Developing a Software Project Plan

e Software Economics: Cost Estimation Techniques, Risk Assess-
ment, Cost-Benefit Analysis, and Trade-off Studies

e Tools and Techniques for Monitoring and Controlling Software
Quality and Programmer Productivity

e Tools and Techniques for Monitoring and Controlling Schedules
and Budgets

e Practicum in Technical Writing and Oral Presentations

o Motivational Issues for Programmers and Software Engineers
e Participating in A Software Engineering Team

¢ Leading A Software Project Team

59

60 SEE: An Idealized Scenario

¢ Practicum in Software Engineering Team Projects
« Management of Software Maintenance Activities
» Standards, Policies, and Procedures in Software Engineering

Table 4. Structure of a PhD Program in Software Engineering

Breadth

¢ 12 Graduate Level Courses

¢ 6 from Masters Core

® 4 areas:
* Software Engineering Methods
+ Software Engineering Management
* Quantitative Methods
» Computing Technology

Depth
» Courses
¢ Seminars
o Directed Study

Dissertation Areas
o Case Studies
o Exemplar Artifacts
» Experimental Studies
¢ Theoretical Advances

Research Orientation
¢ Technology of Computing Software

Essential Elements of Software Engineering
Education Revisited

Peter Freeman
University of California, Irvine

The Thesis

Ten years ago an intellectual basis for software engineering education
(SEE) was proposed that identified a set of components that should
underlie any curriculum in the field [38]. Those components included
computer science, management science, communication, problem-
solving, and design; they stressed the integration of management and
technical issues in software engineering.

A review of that proposal convinces me they are still the right elements.
However, events of the intervening ten years and the current require-
ments for SEE lead me to the conclusion that the design component is
being seriously underemphasized.

Further, | believe that the lack of progress in building the structures to
deliver SEE is highly problematic. This perception leads to some other
observations about SEE and what we should be doing about it. This
paper develops these two theses and suggests some directions we
should be taking.

Essential Elements Reviewed

The 1976 paper noted that, "We believe that five content areas should
form the basis of any software engineering curriculum." For each of the
areas (computer science, management science, communication skills,
problem solving, and design methodology), we addressed three topics:
how the content is used by the software engineer, the range of
knowledge needed, and the depth of underétanding required.

The paper implicitly stressed the principle that software engineering is
an applied activity that must carefully integrate managerial and technical
concerns and techniques. It went on to address the issue of teaching
software engineering (a topic expanded on in several later papers
[41, 101, 54]) and ended with the following:

62 Essential Elements of SE Education Revisited

"Any such curricula must meet the following criteria:

1. Be based on the five content areas outlined here;

2. Be flexible so that they can change easily and be adapted to
substantive developments in the field;

3. Be based on computer science and be viewed as "applied
computer science." Other alternatives will lead to suboptimal
educational programs.

4. Prepare students to push forward the boundaries of
knowledge and techniques, not just apply what is already
known.

5. Include a large amount of realism and practical work.

6. Provide for multiple implementations, dependent upon career
objectives and backgrounds of students and upon the
academic home of the program;

7. Build on existing curricula to the extent possible.”

| would write the same paper today. While much has happened in the
past ten years and while there are certainly some refinements | would
make, | think this is still the foundation on which software engineering
(and educational programs to support it) must be built for the foresee-
able future.

Let me note some of the needed refinements here without going into
detail. "Management science" should be broadened to "management”;
many of the things the software engineer needs to know about manage-
ment are not quantitative and never will be. "Design methodology"
should be broadened to "design practice" or just "design”; (more on this
below). Although implicit in the emphasis on computer science (in the
broad sense) in our original definition, the long range importance of
automated and/or mathematically based techniques in software en-
gineering means that the software engineer must have a strong foun-
dation in those parts of computer science that are relevant to effective
use of these techniques; the loose nature of the definition of computer
science argues that a tighter definition of what we intend for the
software engineer to know is needed.

My revisitation to this proposal and the added perspective of ten years
thus confirms (for me, at least) that it is indeed the proper foundation.
But, that does not mean | am sanguine about our present situation.

Freeman 63

On the contrary, | am disturbed by two things, one procedural, one sub-
stantive. Procedurally, | fear that the software field is like some of
America’s basic industries, which for years refused to acknowledge that
changes were needed; the lack of progress in software engineering
usage and education is extremely serious. As an educator, | must take
a share of the responsibility.

Substantively, my experience of the past ten years argues even more
forcefully that design must be the integrative knowledge and activity that
is the core of software engineering. That part of the content of software
engineering education must be emphasized and put into effective ac-
tion.

Before expanding on these two topics, permit me to share my percep-
tions of some of the significant events (for software engineering) of the
past ten years and the current demands on and for software engineering
education.

What’s Been Happening Since We Talked Last?

Although there have been numerous public sessions at meetings, un-
doubtedly many private gatherings, and some curriculum development
efforts, | believe this is the first effort since 1976 [39] to address strategi-
cally the question of where software engineering is or should be
headed. In reflecting on the past decade, | have tried to identify the
events or trends that are most relevant to our present considerations:

1. The general expansion of computing in all its aspects;

2. The creation of a significant software package industry, as
well as the great expansion of custom development ser-
vices;

3. The microcomputer revolution and the consequent growth
of software development for small machines;

4. The emergence of microcomputers as a tool for the
software engineer;

5. The growth in number (and size) of very large software
systems;

6. The growing perception that automation (especially Al) is
important to the software engineer;

64 Essential Elements of SE Education Revisited

7. Greatly increased investment in tools and, to some extent,
training for programmers;

8. The focus on the front-end activities of development;
9. Lack of attention to the design activity;

10. Creation of national research and technology-transfer
programs in a number of countries;

11. Failure of most universities to get into SEE activity;

12. Failure of most industries to do anything significant about
on-the-job training for software engineers;

13. Lack of integration of software engineering content into
traditional computer science or information science cur-
ricula;

14. Lack of any significant breakthroughs or greatly deepened
understandings of software engineering;

15. The small increase in the general level of usage of what
we do know.

These are not listed in any particular order; further, | am sure you have
your own opinions about relative importance — indeed, you may not
even believe that some of these have actually occurred. They are,
however, the things that stand out for me. My purpose here is not to
discuss the ramifications of these events since that will show up in my
later comments. Rather, | will limit my discussion of them to the two that
help drive my major theses.

In a sense, when | review where we have been in the past ten years, |
feel that we have simply jumped over the design activity. The early 70’s
were characterized by attention to programming methodology. Around
1976 many people started to become concerned about the "front-end"
activities of requirements analysis and specification; that concern con-
tinues to the present. With some exceptions, there has not been an
analogous focus on what happens between the time the requirements
and specifications are "known" and the programming activity begins.

There is no question that front-end activities are critical and that some
high payoff can be had by improving them. What we as a field seem to
have skipped over, however, is the critical activity of taking the results of
those:front-endractivitiesranditurning them into coherent systems — that
is, design, as distinct from programming.

Freeman 65

When | consider how systems are built today by most organizations and
consider how they were built ten years ago, | don’t believe we have
much of which to be proud. Likewise, when | ask what my students
know today about software engineering compared to what students of
ten years ago knew, | cannot see much difference. Over the past
decade the knowledge base of software engineering has grown, and
many improvements in the ways we can build systems have been
developed. The apparent failure simply to disseminate and use that
knowledge concerns me deeply.

Even though these perceptions alone are enough to drive quite a lot of
activity in SEE and technology transfer more generally, it is important to
ask what the world around us is asking for.

What are the Demands of 1986?
The demands of 1986 seem simple to me:

1. High quality software;

2. Flexible designs to permit easy modification and un-
foreseen usage with other software;

3. Shorter development times;

4. Better prepared professionals;

5. More people.

That these demands (and others that may seem more pertinent to you)

are not always attainable, and may even be contradictory given current
techniques, is clear. ‘

We can certainly generate a long list of specific demands for SEE —
more training in use of formal techniques, better command of Ada,
ability to

organize and manage projects, and so on. While that may be useful
when trying to design a curriculum, it doesn't shed much light on
strategic considerations until we abstract them.

The task for SEE in the light of these general demands is to identify the
essential knowledge necessary to satisfy them and find effective ways

66 Essential Elements of SE Education Revisited

of imparting that knowledge to the relevant professionals (and
professionals-to-be). That, of course, is nothing new, but may be worth
keeping in mind.

The core of my thesis is that while all the elements reviewed above are
important, design is the absolutely essential element that must be trans-
mitted to all software engineers in some form. Further, | think there are
some ways of going about it that should have significantly more success
than what we have been doing. That is the subject of the remainder of
this paper.

The Central Role of Design
in Software Engineering

My long-standing interest in and study of design (see, for example, [36])
has led me to stress the importance of design in software development
[37], [40], [39], [42], [44]. The more | learn about software develop-
ment, both abstractly and pragmatically, the more | am convinced of its
absolute centrality.

Rather than repeat what has appeared elsewhere, | want only to sum-
marize those arguments here and move forward to consider what we
should be doing in the area of design education.

What Is Design?

Professor Simon’s definition, "devising artifacts to attain goals" [88], still
captures the essence of what design is all about.

In software, the artifacts of ultimate interest are programs. Until recently
(and, still, for many people) those programs were small, produced by
one person, and were the only "tangible" result of the development
process. This, among other things, has led to a focus on the program-
ming process.

There is no question that creating a program is a design problem. Yet,
the nature of the problem (devising a sequential set of instructions, in
most cases, and data structures that will carry out a desired
computation) conditions strongly what the program designer does.

Freeman 67

When coupled with the small size of individual programs, this has meant
that program design (or programming) is not much concerned with
issues of structure in the larger sense of definition of the components of
a system and their interrelationship.

Software developers repeatedly learn (usually the hard way) that when
dealing with large systems of programs, it is precisely the issue of com-
ponent definition and relationship that is critical. This level of design
(typically called architectural or general or preliminary design) should
thus be concerned with structuring the entire system (devising the
artifact) in order to attain the specific goals at hand.

The process of system or architectural design is one that naturally oc-
curs between the specification activity and the detailed design of
programs. Because of its place in the process and because of the im-
portance of the system structure that it establishes, system design is
where the developer has the opportunity to bring together all the con-
siderations, requirements, constraints, and possibilities of the design
situation to achieve a superior product. It is this set of unique oppor-
tunities that make this form of design so essential; the more so as our
demands become more stringent and our systems larger. Yet, we
largely ignore it in our educational programs and only infrequently do a
good job of it in practice. The connection is obvious.

The Breadth of Design

Design in the general sense of Simon is quite pervasive in software
engineering. We design when we correct a system deficiency by devis-
ing a fix for it. We design when we create the specifications for a sys-
tem. We design when we plan a set of tests to determine if our system
has a desired set of properties.

One of the continuing confusions is between internal and external
design. Most of the instances of design discussed above are concerned
with the way in which functions are implemented — that is, with the
internal design of the system. Most of the design knowledge and tech-
niques of software engineering are concerned with this type of design.

68 Essential Elements of SE Education Revisited

But, we are also designing when we decide what functions a system
should have, how they should behave, and what the relationship should
be between them. This design of the external characteristics of a sys-
tem, usually carried out initially during specification, but often perverted
as development proceeds, is rarely treated as a form of design to which
some of the same knowledge can be applied. Even more importantly,
there is, or should be, an intimate connection between the internal and
external designs of a system.

Software engineering is essentially a synthesis activity. Everyone in-
volved in the systematic creation of software-intensive systems is in-
volved with design. That does not mean, however, that everyone is or
must be a master designer.

Some people need to know the most about external design. Others
need to focus on design changes, while others will be detailed desig-
ners, perhaps in particular specialty areas. Managers need to under-
stand the management of the various design activities as well as be
able to apply some of the design problem-solving techniques to
problems they face such as the design of an effective working group.

Design as a process and as a body of knowledge is the single thing that
is common to just about everything in software engineering. Every
software engineer must know something about design and the critical
path of technical development must be driven by the designer.

The Curriculum Implications of Design
There are three curriculum aspects relative to design:

e Processes of design
» Design knowledge
e Training mechanisms

Because there is much to discuss on each of these, and many different
viewpoints, | will only sketch enough here to indicate my meaning.

Design is a process. There are things to be done, decisions to be for-
mulated, decisions to be made, results to be validated, information to be
collected. One can (and often does) proceed intuitively through design.

Freeman 69

However, we do know some things about how to structure the process
in particular situations. Popular "design methods," such as structured
design or Jackson design, are examples of highly organized design
processes that have been packaged explicitly. Other knowledge about
how to proceed and how not to proceed in the design of large systems
can be codified and passed on to new designers. Techniques of
managing a design activity can be formulated and applied to practice
situations. The results on the process of using different types of design
tools can be studied. The history of design projects, both successful
and unsuccessful, can be reviewed. These are some things relating to
the design process that should be a part of the curriculum.

Design knowledge is harder to delimit. In one sense, everything known
about software or computers is knowledge that may someday be
needed by a designer in order to make a decision; it is the overall task
of SEE to winnow out the most relevant of this mass of information and
make sure that the software engineer has access to it.

There are some specific kinds of design knowledge that can be im-
parted, however. One of the most important is the study of successful
design structures. Another is the study of system architectures as re-
lated to specific functional architectures. Knowledge about trade-offs
between different algorithms or data structures, while clearly a general
subject, is relevant to the task of making design decisions. The con-
tribution of different system elements to desired quality criteria such as
reliability is a highly relevant piece of design knowledge. As we focus
more on the process of design, additional topics will arise.

The third aspect of the design curriculum is the set of mechanisms for
training designers. Fundamentally, design is a skill which must be prac-
ticed to be learned. A close integration of the preparation for doing
design (learning the processes and the design-oriented knowledge) and
the practice whereby it is really learned is essential; further, an often
overlooked aspect is the continuing feedback to the designer on his per-
formance and the need for refreshers. (More on this below as | look at
the second issue: technology transfer.)

70 Essential Elements of SE Education Revisited

Software Engineering Education — The Process

Let me return now to a consideration of the broader picture of SEE, not
just the design component. As noted in the introduction, | think that we
have been unsuccessful in the past ten years in getting software en-

gineering established in any broad sense as part of the educational
scene.

That statement is in no way intended to diminish the accomplishments
that have been made: The establishment and continuing growth of
Wang Institute, the establishment of the Software Engineering Institute
at Carnegie Mellon University, the creation and successful operation of
IBM’s Software Engineering Institute, the institution of several extensive
corporate training programs, the publication and successful sales of
several general textbooks are all important achievements. Yet, com-
pared to what is needed (viewed either from the supply or the demand
side), we have barely scratched the surface.

There are no masters-level degree programs (to my knowledge) specifi-
cally oriented to software engineering at a major university. Most
schools do not even have a software engineering course in the context
of a computer science curriculum. The one serious attempt at cur-
riculum development [54] by a group that could represent a broad
spectrum of the field was stillborn, apparently the victim of turf wars.
Attempts to infuse some software engineering into other curricula have
had little success.

My own situation is illustrative. My department started a professional
master’s program in 1975, aimed at top quality students who wanted to
pursue serious careers as computer science professionals. The most
popular option (with more than 50% of the students) within the program
was a concentration on software engineering. Although successful, the
department chose to phase out the program beginning in 1982 due to
lack of resources (both monetary and faculty) and a need to focus our
energies on research. The result has been good for the department, but
detrimental to our ability to provide software engineering education.

Freeman 7

Two things are relevant in this vignette to understand why the field has
not made much progress in SEE. One is that we got little financial
support from local industry for the program; moral support was plentiful,
but it is hard to pay salaries with that. The other is that the pressures of
a research university are generally for increased research accomplish-
ment; in a new field like computer science, the pressure can be par-
ticularly strong. Further, in the face of severe shortage of faculty one
must strongly prioritize the allocation of resources.

| don’t believe there are any silver bullets in SEE. We face a situation
that is fundamentally one of changing people’s attitudes toward the im-
portance of what SEE has to offer at a time when there are severe
shortages of people capable of providing it and in the face of increasing
competitive pressures that make the addition of what is seen as simply
additional costs highly problematical. This state of affairs has existed
the past ten years and is worsening, if anything.

Viewed in this context, perhaps we have done as well as we could have.
The only constructive course of action, in any event, is to try to find
ways of moving forward more effectively. To that end, | have several
suggestions regarding the process of providing SEE; some of these are
not terribly new, so consider them a reaffirmation!

Some Steps Needed to Move Software Engineering
Education Forward

1. Establish more institutes like Wang. Although the number of
graduates that Wang is able to produce is small, it has high value to the
field as a showcase and model. | think the establishment of several
(probably less than six) more institutes like Wang would be beneficial.

They should probably be geographically dispersed and might well follow
fundamentally different patterns (although having two or three similar,
semi-competitive institutes like Wang would probably be useful).
Several could exist in the context of established educational institutions
of different sorts (indeed, Carnegie Mellon University-Software En-
gineering Institute may turn out to be exactly this). One might be a
non-profit service center for a consortium of industries in some region;

72 Essential Elements of SE Education Revisited

one might be profit-making (a fair amount of money is made delivering
courses of marginal value; why couldn’t someone make a go of deliver-
ing quality education?); one might be specialized to a particular industry
or application (for example, building software for automated factories).

Although | believe the need is great enough to warrant support by the
federal government, the current financial climate probably prevents that.
The issue, in any event, is to provide more visible examples of how to
provide SEE.

2. Integrate software engineering concepts into undergraduate
curricula. There are a number of techniques and concepts of SE that
can be assimilated by undergraduates. Given that most computer
science majors go to work in industry, we could certainly raise the
general level of competence significantly and provide a better base for
further professional training if they were better prepared. Although
warming to the task slowly, most departments are at least receptive to
the idea of incorporating material into their curricula that will better
prepare students for their professional careers.

| believe this has not been done largely because of the lack of published
curricula by the professional societies. The existence of Wang and an
increasing selection of textbooks will help, but some formal curricula
suggestions by recognized bodies that represent a broad sample of the
community are urgently needed.

3. Create some master's programs in major universities. Univer-
sities are just as competitive as anyone else. If two or three quality,
professional master's programs are started at leading universities, the
idea will catch on. How to do it is more problematical, but | suspect that
the combination of renewed support for education in general and the
competition among states for high-tech industry will produce some start
ups soon.

4. Encourage industrial retraining. Again, the changing tax laws and
budget situation remove some of the incentives, but the value should
still be clear. If industry needs N software engineers, we certainly don't
need to turn out N people educated and trained from scratch. Many

Freeman 73

people already in industry have a good bit of the background necessary
to be good software engineers. Further, they often have the advantage
of maturity, leadership ability, and application knowledge. A good bit of
work needs to be done, however, to find ways of identifying those that
will most benefit from such retraining and ways of providing it in different
situations.

The American industrial system has often been faulted, properly | would
say, for throwing away its employees instead of retraining them. This is
a situation in which this would be foolish to an extreme. There simply is
no way that we are going to educate enough people from scratch to
carry out the tasks at hand, and doing the tasks with poorly trained
people is increasingly counterproductive. Further, one of the things that
seems clear about software engineering is that the more professional
maturity and application knowledge one has the better; many people
currently working have acquired these traits without proper training in
software engineering.

5. Establish a tradition of continuing education. Software engineers
need to have continuing professional education, just as medical doctors
do. As we establish the educational mechanisms for software profes-
sionals, we must educate students to expect this and at the same time
start to provide for it.

6. Carry out some solid economic studies of the impact of
software engineering. Certainly one of the primary inhibitors to the
adoption of software engineering in practice has been the lack of much
believable supportive economic data (at. least data that is publicly
available). Studies that strongly support the value of using software
engineering should make it easier to obtain the funding necessary to
provide the needed education.

There are other possibilities, of course. Similarly, there are a number of
suggestions for improving the actual delivery of SEE. In closing, | will
only mention the need in the area of design for educational structures
that permit students to alternate between the classroom and the
development.shop.(but.under.some, carefully fashioned monitoring), al-

74 Essential Elements of SE Education Revisited

lowing them to move through several cycles of obtaining formalized
knowledge and learning how to apply it.

Conclusion

The basic elements of software engineering education seem to be con-
stant, although there are strong arguments that design should be the
essential ingredient that ties the other elements together. Our progress
in establishing SEE has been slow and the prospects for the future are
not much better; however, several strategies are suggested.

The survival of American economic capability depends in no small way
on our success. Providing software engineering education and making
sure that the knowledge so imparted is actually put to use is an essen-
tial enabling technology for the renewal of our industries.

Software Engineering and Computer Science:
How Do They Differ?

Robert L. Glass
Seattle University

Abstract. "Thermodynamics owes much more to the steam engine
than the steam engine owes to thermodynamics... if we look at the
usual course of events in the historical record... there are very few
examples where technology is applied science. Rather it is much
more often the case that science is applied technology” (from "Sealing
Wax and String: A Philosophy of the Experimenter's Craft and its
Role in the Genesis of High Technology," Proceedings of the
American Association for the Advancement of Science, annual meet-
ing, 1983; D.D. Price).

I am a software practitioner of thirty years experience, and an
academician of four years experience. My background traces back to
the origins of computing as a profession. Out of that long background, |
have formed some biases and discovered some truths. | would like to
share some of those with you here.

First of all, a definition: software engineering, | would assen, is applied
computer science. For those of you with an academic background, this
may be a sufficient definition. Just as there are applied mathematics
and pure mathematics, there can be applied and pure computer
science. For those of you with a practitioner background, however, this
definition may be begging the question. It defines one term with refer-
ence to another that isn’t that well defined. Let me explain.

Back in the 1950s, when | first began my professional career as a
programmer, there was no computer science, and there was nothing
called software engineering. Computer science came along nearly a
decade later, creating a science out of the existence of computers in the
same way that, as Price described above, thermodynamics was born
out of the existence of the steam engine. Then came software en-
gineering, lagging computer science by another half decade.

76 SE and CS: How Do They Differ?

Those of us in the practice were a little uncomfortable with computer
science. It put a neat and tidy framework around some things that to us
weren’t that neat and tidy, no matter how much we wanted them to be.

But when software engineering came along, it was like a trip home after
a long absence. Software engineering seemed to care about what the
good programmers had been doing for a decade and a half; it was
based on the reality of the practice.

Some exampies might help here. Computer science, as the years have
rolled by, has come to be things like research into automated program-
ming and proof of correctness. Software engineering, as the years have
rolled by, has come to be research into things like "empirical studies of
programmers." Computer science research efforts currently lie under
the cloud of condemnation contained in the Parnas papers on Star
Wars. Software engineering research is still evolving, but the claims it
makes for the future are at least buttressed by an understanding of the
realities of the present.

But enough of the past. Given that software engineering has a kinship
with software practice, and that computer science develops and formal-
izes computing theory, what can we say about the difference between
software engineering and computer science as educational forces of the
1980s and beyond?

There are some things which good computer science and good software
engineering should have in common:

¢ They should present a menu of solution methodologies, not
a single blueprint. Single blueprints ignore the reality that
different kinds of applications require different kinds of solu-
tion approaches.

¢ They should be taught by people who understand both the
theories of computer science and the realities of software
practice. For software engineering, the scale should be
tipped toward experience; for computer science, it may be
tipped toward theory.

Glass

77

There are some things which good software engineering should stress:

1.

2.

A knowledge of computer science theory is a necessary
but not sufficient part of the software engineer’s tool bag.

Computer science theory sometimes does not work in
practice. The software engineer must know enough about
the theory to know how to avoid these failures.

. Software development experience really is worth some-

thing. The grizzled veteran of half a decade probably has
achieved and surpassed several levels of evolving
maturity in the course of reaching that experience level
(assuming that five year’s experience is not one year's ex-
perience five times). Those levels of maturity need to be

passed on to junior people by experienced senior
educators.

. The world needs bridge builders between theory and prac-

tice. Inthe U.S., everyone wants to do the "R" of "R and
D." Poor theories will never be discarded and good
theories put into practice until someone is willing to play
the "D" role, trying out theories in a realistic setting to see
if they work. Software engineers should not only be able
to move into the practice of software smoothly, but they
should take with them the informed yet questioning mind
that allows them to pursue and evaluate new proposals for
professional improvement.

Seen in this light, the fields of computer science and software engineer-
ing are siblings that have all the similarities and uniquenesses that si-
blings in general have. It is important, in building an education program
in either field, to use the similarities as a foundation and stress the uni-
quenesses as end goals. With that approach, we will be able to capture
the best of both disciplines — the framing and formalizing of computer
science, and the reality base of software engineering.

The Environment for the Software Engineer

A. Nico Habermann
Carnegie-Mellon University
Abstract. The task of education and educators is threefold:

e to teach basic principles that have a lasting value and can be
applied in the analysis of events, phenomena and artifacts;

e to provide insight into the current state of the art and the his-
toric development that led to this state;

e to teach a body of facts, procedures and mechanisms for the
application of knowledge.

The fundamental aspects of education apply to every discipline, in-
cluding software engineering, which has the objective of producing
high quality software products and software tools. When software
engineering emerged as a separate subdiscipline, most of the effort
went into the development of concepts and methodologies. It has
become clear in recent years that these concepts and methodologies
will not be effective without the support of integrated tools and task-
oriented programming environments. |t is therefore necessary to pay
sufficient attention in education to the engineering of these tools and
environments.

Introduction

It is often hard to define a discipline accurately in terms of primitive
notions that are familiar to everybody. For instance, an attempt to
describe computer science might be: "Computer science is the discipline
that involves the study of algorithms, including their properties and
issues of representation, implementation and execution, and that in-
volves the design and application of algorithms and supporting equip-
ment for the creation of information systems that can be used for infor-
mation retrieval and for the generation of new information." Although
such a definition characterizes the field in general terms, it clearly fails
to convey the nature of the problem domain in which computer scientists
are interested. It would be hard to derive from this description, for in-
stance, that programming languages constitute a major topic of interest
in computer science. It is not uncommon that scientists avoid all
problems of describing their discipline with a phenomenal characteriza-
tion such as: "Computer science is what computer scientists do."

Habermann 79

In the case of engineering, we can do a little better than: "Engineering
is what engineers do." The Dictionary of the American Language says
that engineering is the application of scientific knowledge or technical
know-how to the creation of mechanisms that facilitate the achievement
of a goal. This description applies well to various forms of engineering
as we know them, including civil engineering, mechanical engineering,
chemical engineering and electrical engineering. It also applies well to
software engineering, where the mechanisms are software tools and
programming environments, and the goal is the production of reliable
and user-friendly software systems that perform well and that are con-
structed according to specs, on time and within budget.

It is interesting to note that software engineering has the peculiar
characteristic that the mechanisms it creates are of the same nature as
the goal it pursues: both mechanism and goal are software systems.
Mechanical engineering is in some respect in a similar position since it
may devise machines to produce machines. Civil engineering, on the
other hand, is not likely to employ mechanisms of the same nature as its
goal: the construction of an airport, for example, requires the use of
heavy machinery and trucks. There is no particular need for another
airport as one of the construction tools.

The point | wish to make in this short paper is that an important aspect
of software engineering is its application to itself and that this obser-
vation is relevant to software engineering education. Since mechanism
and target are both cast in software, one may expect that similar
development support tools will work for the creation of both target and
mechanism. After a brief discussion of the foundation of software en-
gineering and the nature of education, the application of software en-

gineering to software engineering education is further discussed in the
last section.

The Foundation of Software Engineering

In order to do a good engineering job, one has to understand both the
target product and the available means very well. This implies that the
software engineer must understand the construction and application of
software systems and also the techniques for analyzing and improving

80 Environment for the Software Engineer

systems. This is obviously a tall order, because it requires the software
engineer to know the core of computer science and to be more than
familiar with application fields such as business management or natural
sciences. It also requires him or her to know the typical techniques and
mechanisms that have been developed to control and improve the
software production process.

Since a thorough knowledge of the main body of computer science is a
necessary prerequisite, software engineering should not become the
major topic of study until a level has been reached equivalent to that of
a senior college undergraduate in computer science. If an under-
graduate program in computer science is to prepare for further study in
software engineering, it should emphasize programming languages and
systems and leave room for electives in other disciplines such as busi-
ness administration or physics and chemistry. It is clear that, if one also
takes into account the need for sufficient background in discrete math-
ematics, computer technology and computer literacy, the proper place
for a software engineering program is at the master degree level as one
of several possible specializations in computer science.

The Nature of Software Engineering Education

In the planning of the Software Engineering Institute, we made a clear
distinction between training and education [6]. This distinction has been
clearly stated in various documents and is also reflected in the structure
of the SEI, notably in the creation of a Technology Transition & Training
Division and a Research & Education Division.

The emphasis of training is on "how to do a job" rather than on analyz-
ing the job and on considering alternative methods for carrying out the
job. Education, on the other hand, is always analytic in nature: it not
only presents new material to students, but it also teaches the students
to discover common features as well as differences and to make relative
value judgements. Another difference between training and education
relates to an aspect that many science and engineering disciplines have
in common: the experimental approach to testing a hypothesis or to
providing evidence for an idea or a viewpoint. While training concerns
primarily the acquisition of factual information and know-how, a major

Habermann 81

aspect of education is to teach students to apply the scientific method of
analysis and experimentation.

The task of education and of educators is

e to teach basic principles that have lasting value and can be
applied to the analysis of events, phenomena and artifacts;

» to provide insight into the current state of a discipline and
the development that led to this state;

¢ to teach a body of facts, procedures and mechanisms for
the application of knowledge.

In this paper, we will concentrate on the first issue, the basic principles.
Software engineering builds on principles that can be categorized along
three dimensions inherent to the construction of large software systems.
These dimensions represent

 the quality of the target software product;

¢ the process controlling the development of a product;

o the interaction and communication between people creating
a product.

The first category, which may appropriately be labeled "product control,"
consists of product properties such as reliability, user-friendliness, per-
formance, fault-tolerance, etc. Software engineering involves tools and
techniques that measure software products with regard to these various
properties and help us improve products along this dimension.

The second category, for which "process control" is an appropriate
label, comprises issues concerning what is generally known as the
"software lifecycle,” which describes the development of a software
product as a sequence of steps that starts with requirement specifica-
tions and leads through design specifications, implementation, system
construction and testing, and finally to software maintenance [Fa85].
Recent experience has shown that these steps should not be con-
sidered as successive development phases ordered in time. It has, for
instance, generally been recognized that requirement specifications are
initially bound to be incomplete and need refinement when design and
implementation take place. It seems to happen frequently that specifica-
tions are still being modified when software has reached the main-

82 Environment for the Software Engineer

tenance stage [12]. One should therefore treat these steps as coexist-
ing product views, each describing a different aspect of the software
product in which we are interested. Requirement specifications
describe the purpose of a system, design specifications the functionality,
implementation how the system works, system construction how the
pieces are put together, testing how well it works, and maintenance
what kind of trouble was encountered, what changes were made and
which extensions were implemented.

The third category is generally known as "project management." It
deals with issues that arise when people have to work together in an
organization that is charged with the creation of a product within a
predetermined period of time and with limited resources [18]. The task
of project management is twofold:

e to enforce rules of behavior, and

{0 generate and provide access to project information.

Rules of behavior primarily concern policies on documentation,
modification rights and deadline control. When code or documents are
modified, programmers must be forced to leave a trace of their actions
and should not be able to bring a project into an ill-defined intermediate
state. It is also likely that one wants to enforce certain documentation
and coding standards that make it possible for programmers to read and
use each other’'s material. The purpose of project information is to en-
able programmers to inspect the overall state of the project and to as-
semble versions of program modules into system configurations.

The partitioning of the software production process into the three dimen-
sions, "product control,” "process control," and "project management,"
can serve as the basis for a coherent software engineering curriculum. It
can be used to categorize the principles of software engineering and
can also be used to survey the current state of the art. Once a good
overview of the existing techniques is assembled along the three dimen-
sions, one can analyze the status of each individual piece with respect
to availability, accuracy, adaptability, formal foundation, etc.

The Educational Environment

Software engineering concepts were first developed in the early
seventies when programming-in-the-large became an issue. Their
development is quite different from that of other subdisciplines such as
operating systems, programming languages and“databases: These
other subdisciplines gave rise to a large variety of products, all built
around an increasing body of common knowledge and expertise. This
has unfortunately not been the case in software engineering. Early on
in the development, an irreparable rift emerged between two camps,-
one consisting of proponents of formal verification and the other consist-
ing of those promoting the informal method of code testing. That rift has
not been healed to this date. In addition, many measurement and
development support tools have been developed in an ad hoc fashion
and in relative isolation. The result is a large collection of tools ade-
quate for specific purposes, but lacking coherence and common prin-
ciples.

The lack of coherence in software development tools is apparent in the
programming environments that most programmers work in today. It is
common that people work with text editors that don't know anything
about programming languages, with programming languages that don't
know anything about the file system and with debuggers that under-
stand object code, but not the source language in which programs are
written.

The recent development in the design of integrated programming en-
vironments is an encouraging sign of improvement. There is a general
tendency to create environments that provide coherent sets of tools in
support of specific software development tasks. There is no doubt that
a major task of software engineering in the near future is going to be the
production of marketable programming environments that offer in-
tegrated sets of task-oriented tools.

The main point to be made here is that a good program in software
engineering must integrate the traditional oral and written communica-
tion between teacher and student with experimental programming en-
vironments. These environments should contain software engineering

84 Environment for the Software Engineer

tools that can be analyzed and applied by the students. The motivation
for such an integrated<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>